期刊文献+

D-S证据理论改进算法提高水下目标识别准确性 被引量:5

Algorithm Improvement of D-S Evidence Theory in Submarine Target Recognition
下载PDF
导出
摘要 D-S证据理论在目标识别中有着广泛的应用,是较好的数据融合方法之一,但在证据高度冲突时,会产生有悖常理的结果。针对此问题,引入传感器的可信度,提出了一种新的改进算法。该算法弥补了D-S证据理论所存在的不足,比其他改进算法融合效果好,此算法应用于水下目标识别,计算结果表明提高了水下目标识别的准确性和有效性。 D-S evidence theory is widely used in target recognition. It is an effective method of multi-sensor data fusion. However,it involves counter-intuitive behaviors when the high conflict information exists. In view of the problem,the reliability of sensor is introduced and the new algorithm is proposed. The algorithm makes up for the shortcomings of D-S evidence theory,and has better fusion effect than other improved algorithms. The algorithm is applied in submarine target recognition and the calculation result indicates that the algorithm is effective and correct.
出处 《现代防御技术》 2018年第1期120-124,155,共6页 Modern Defence Technology
关键词 数据融合 多传感器 目标识别 证据理论 改进算法 可信度 data fusion multi-sensor target recognition evidence theory improvement algorithm reliability
  • 相关文献

参考文献5

二级参考文献34

共引文献510

同被引文献61

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部