期刊文献+

Zgymund空间到Bloch空间的微分复合算子

Products of Differentiation and Composition Operators from Zgymund Space into Bloch Space
下载PDF
导出
摘要 讨论Zygmund空间到Bloch空间微分复合算子的有界性及紧性,得到此类算子有界性和紧性的充分必要条件. The boundedness and compactness of the products of differentiation and composition operators from Zygmund spaces to Bloeh spaces are discussed in this paper. Some sufficient and necessary conditions for the boundedness and compactness of these operators are obtained as well.
作者 罗志丹
机构地区 汕头大学数学系
出处 《汕头大学学报(自然科学版)》 2018年第1期18-25,共8页 Journal of Shantou University:Natural Science Edition
基金 国家自然科学基金资助项目(11371234)
关键词 ZYGMUND空间 BLOCH空间 微分算子 复合算子 Zygmund space Bloch space differentiation operator composition operator
  • 相关文献

参考文献2

二级参考文献14

  • 1Axler, S. & Zheng, D., Compact operators via the Berezin transform, Indiana Univ. Math. J., 47(1998),387-400.
  • 2Clifford, J. H., The product of a composition operator with the adjoint of a composition operator,Thesis, Michigan State University, 1998.
  • 3Clifford J. H. & Zheng, D., Composition operators on the Hardy space, Indiana Univ. Math. J.,48(1999), 387-400.
  • 4Cowen C. C. & MacCluer, B. D., Composition operators on spaces of analytic functions, CRC Press,1995.
  • 5Hedenmalm, H., Korenblum, B. & Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics,199, Springer, New York, 2000.
  • 6Kriete, T. L. & MacCluer, B. D., Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J., 41(1992), 755-788.
  • 7Littlewood, J. E., On inequalities in the theory of functions, Proc. London Math. Soc., Ser. 2, 23(1924),481-519.
  • 8Luecking, D. & Zhu, K., Composition operators belonging to the Schatten ideals, Amer. J. Math.,114(1992), 1127-1145.
  • 9MacCluer, B. D. & Shapiro, J. H., Angular derivatives and compact composition operators on Hardy and Bergman spaces, Cand. J. Math., 39(1986), 878-906.
  • 10Poggi-Corradini, P., The essential norm of composition operators revisited, Contemporary Math. AMS,213(1997), 167-173.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部