期刊文献+

共熔法制备超高温陶瓷基复合材料 被引量:2

Ultra-High Ceramic Matrix Composites Made by Eutectic Method
下载PDF
导出
摘要 首次采用共熔法制备超高温陶瓷基复合材料,三个样品初始组分分别为ZrB_2与鳞片石墨,ZrB_2、TaB_2、SiC及鳞片石墨,ZrB_2、MoSi_2与鳞片石墨。研究结果表明,共熔法制备的复合材料中各相分散均匀,产物中的石墨高度有序,石墨层间距分别为0.335 4、0.335 9与0.337 7 nm,且三者的微晶厚度分别为63.4、51.5及68.7 nm,拉曼光谱结果表明硼已经掺杂进入了石墨的网格结构。所制得的超高温陶瓷基复合材料样品中均存在一定的孔隙率,且制备的超高温陶瓷基复合材料的热导率较低。该方法为一种新型、快速、一步法制备超高温陶瓷基复合材料工艺。 Ultra-high temperature ceramic matrix composites were firstly made by eutectic method. The composites were made from ZrB_2 and flake graphite,ZrB_2,TaB_2,SiC and flake graphite,or ZrB_2,MoSi_2 and flake graphite,respectively. Results shows that different phases distribute uniformly in these composites,and the graphite phases in the composites were highly ordered. The d002 values of the graphite in the composites were 0.335 4,0.335 9 and 0.3377 nm,and the Lcvalues were 63.4,51.5 and 68.7 nm,respectively. Boron had already doped into the carbon net,as indicated by the Raman analysis,and some amount of pores existed in the composites. Also,thermal conductivity coefficient of the composites were not very high. Eutectic method could be a promising method for making ultra-high temperature ceramic matrix composites.
作者 杨金华 刘占军 郭全贵 YANG Jinhua;LIU Zhanjun;GUO Quangui(Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095;National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095;Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001)
出处 《宇航材料工艺》 CAS CSCD 北大核心 2018年第1期37-43,共7页 Aerospace Materials & Technology
关键词 二硼化锆 超高温陶瓷 陶瓷基复合材料 共熔 ZrB2 , Ultra-high ceramics, Ceramic matrix composites, Eutectic
  • 相关文献

参考文献2

二级参考文献27

  • 1[1]Deacon R F. Graphite-base refractory composite material.In:Proceeding of the Royal Society series A,1985;243:464
  • 2[2]Kobayashi K, Miyazaki K, Ogawa I et al. Carbon/ceramic composites preparation and properties. Material & Design, 1988;9(1):10
  • 3[3]Savage G. Carbon-carbon composites. Chapman & Hall,1993:198 ~ 209
  • 4[4]Mckee D W, Spiro C L, Lamby E J. The effects of boron additives on the oxidation behavior of carbons. Carbon, 1984; 22(6):507
  • 5[5]Savage G. Carbon-carbon composites. Chapman & Hall,1993:118
  • 6[6]Koboyashi K,Meeda k. Sano H et al. Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powders. Carbon, 1995;33(4) :397
  • 7[7]Sogabe T,Matauda T,Karoda K et al. Preparation of B4C-mixed graphite by pressure less sintering and its air oxidation behavior. Carbon, 1995;33(12): 1 783
  • 8Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5):1347-1364.
  • 9Zhao D, Zhang C, Hu H, et al. Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch environment[J]. Composites Science and Technology, 2011, 71(11):1392-1396.
  • 10Tong Q F, Shi J L, Song Y Z, et al. Resistance to ablation of pitch-derived ZrC/C composites[J]. Carbon, 2004, 42(12-13):2495-2500.

共引文献5

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部