期刊文献+

Using hot-vapor bypass for pressure control in distillation columns

Using hot-vapor bypass for pressure control in distillation columns
下载PDF
导出
摘要 Distillation column control is widely explored in literature due to its complexity and importance in chemical and petrochemical industries. In this process, pressure represents one of the most important variables to be controlled. However, there are few studies about how pressure affects the dynamic behavior of distillation columns and most research on distillation column control involve direct manipulation of cooling fluid through the condenser. Nevertheless, such an approach demands constant changes in cooling fluid flowrates that are commonly by the order of tons per hour, which can be difficult to work or even unfeasible in a real plant. Furthermore, this strategy is usually avoided, as it can cause fouling and corrosion acceleration. The hot-vapor bypass strategy fits well as a solution for these issues, eliminating the need to dynamically manipulate cooling fluid flowrates in the condensation unit. This work presents the modeling and simulation of a conventional distillation column for the separation of water and ethanol, in which a comparative study between a conventional pressure control and a control using hot-vapor bypass was performed. The main results were obtained through dynamic simulations which considered various disturbances in the feed stream, and demonstrated superior performance by the hot-vapor bypass system over the usual scheme proposed in literature, while evaluating the lntegral Absolute Error (IAE) norm as the control performance index. Distillation column control is widely explored in literature due to its complexity and importance in chemical and petrochemical industries. In this process, pressure represents one of the most important variables to be controlled. However, there are few studies about how pressure affects the dynamic behavior of distillation columns and most research on distillation column control involve direct manipulation of cooling fluid through the condenser. Nevertheless, such an approach demands constant changes in cooling fluid flowrates that are commonly by the order of tons per hour, which can be difficult to work or even unfeasible in a real plant.Furthermore, this strategy is usually avoided, as it can cause fouling and corrosion acceleration. The hot-vapor bypass strategy fits well as a solution for these issues, eliminating the need to dynamically manipulate cooling fluid flowrates in the condensation unit. This work presents the modeling and simulation of a conventional distillation column for the separation of water and ethanol, in which a comparative study between a conventional pressure control and a control using hot-vapor bypass was performed. The main results were obtained through dynamic simulations which considered various disturbances in the feed stream, and demonstrated superior performance by the hot-vapor bypass system over the usual scheme proposed in literature, while evaluating the Integral Absolute Error(IAE) norm as the control performance index.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期144-151,共8页 中国化学工程学报(英文版)
基金 the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)for financial support for this work
关键词 Distillation Pressure control Hot-vapor bypass 压力控制 蒸馏 蒸汽 石油化学 动态模拟 性能索引 动态行为 直接操作
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部