期刊文献+

Defective Kernel 39 encodes a PPR protein required for seed development in maize 被引量:11

Defective Kernel 39 encodes a PPR protein required for seed development in maize
原文传递
导出
摘要 RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E subclass PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3(nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I,indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize. RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E subclass PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3(nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I,indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第1期45-64,共20页 植物学报(英文版)
基金 supported by the National Natural Science Foundation of China (91435206 31421005) National Key Technologies Research & Development ProgramSeven Major Crops Breeding Project (2016YFD0101803, 2016YFD0100404) the 948 project (2016-X33)
分类号 Q [生物学]
  • 相关文献

同被引文献42

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部