期刊文献+

Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification
原文传递
导出
摘要 This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 μg·L-1 and were correlated with temperature (P 〈 0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 μg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 μg·m-2·d-1 and 4.06 μg.m·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs. This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 μg·L-1 and were correlated with temperature (P 〈 0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 μg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 μg·m-2·d-1 and 4.06 μg.m·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.
出处 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第1期63-71,共9页 地球科学前沿(英文版)
基金 This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41271472, 41473094 and 41671467), Natural Science Foundation of Shanghai Municipality (Grant Nos.14ZR1412100 and 12ZR1409000). Authors also acknowledge J. Lv and J. Han for their assistance with field work and in the laboratory.
关键词 PAHS dry and wet deposition temporal andspatial variation SHANGHAI PAHs, dry and wet deposition, temporal andspatial variation, Shanghai
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部