期刊文献+

Density functions of doubly-perturbed stochastic differential equations with jumps

Density functions of doubly-perturbed stochastic differential equations with jumps
原文传递
导出
摘要 We consider a real-valued doubly-perturbed stochastic differential equation driven by a subordinated Brownian motion. By using classic Malliavin calculus, we prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure on R. We consider a real-valued doubly-perturbed stochastic differential equation driven by a subordinated Brownian motion. By using classic Malliavin calculus, we prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure on R.
作者 Yulin SONG
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第1期161-172,共12页 中国高等学校学术文摘·数学(英文)
关键词 Doubly-perturbed stochastic differential equations (SDEs) absolute continuity Malliavin calculus subordinated Brownian motions Doubly-perturbed stochastic differential equations (SDEs),absolute continuity, Malliavin calculus, subordinated Brownian motions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部