期刊文献+

带有临界增长的Kirchhoff型问题的基态解

Ground State Solutions for Some Kirchhoff Type Problems with Critical Growth in R^3
原文传递
导出
摘要 本文主要考虑如下Kirchhoff问题{-(a+b∫R3|^?u|^2dx)?u+u=f(x,u)+Q(x)|u|^4u,u∈H^1(R^3),其中a,b是正的常数.我们证明了基态解,即上述问题的极小能量解的存在性.同时,如果假定Q≡1,且h(x)满足一定的条件,可以证明下述问题{-(a+b∫R3|?u|^2dx)?u+u=|u|^4u+h(x)u,u∈H^1(R^3)的基态解的存在性. We are concerned with a class of Kirchhoff problem{-(a+b∫R3|?u|^2dx)?u+u=f(x,u)+Q(x)|u|^4u,u∈H^1(R^3),where a, b 0 are constants. The existence of ground state solutions, i.e., nontrivial solutions with least possible energy of this Kirchhoff problem is obtained. Moreover,when Q 三 1,under suitable conditions on h(x),we prove the existence of ground state solutions for the the following Kirchhoff problem{-(a+b∫R3|?u|^2dx)?u+u=|u|^4u+h(x)u,u∈H^1(R^3)
作者 沈烈军
出处 《数学学报(中文版)》 CSCD 北大核心 2018年第2期197-216,共20页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11371158) 长江学者与创新团队发展计划资助项目(IRT13066)
关键词 基态解 Kirchhoff问题 临界增长 变分方法 ground state solutions Kirchhoff problem critical growth variational method
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部