期刊文献+

逐段单调函数的高度与拓扑共轭 被引量:2

Height and Topological Conjugacy of Piecewise Monotonic Functions
原文传递
导出
摘要 迭代运算下,函数值可以交叉于不同的子区间,使得逐段单调函数的高度异常复杂.本文考虑一个非单调点的连续函数类.首先给出高度的充分必要条件,以此获得此类函数的一种划分.其次针对函数类的一个非空子集,给出判定拓扑共轭的充分必要条件和构造拓扑共轭的新方法.进一步地,我们阐明这样的事实:两个逐段单调函数拓扑共轭是其高度相等的充分不必要条件,最后举例说明. Computing height of piecewise monotonic functions is difficult because the value of functions may interact each other under iteration. In this paper we consider the set of continuous functions with a single non-monotonic point. We first present a sufficient and necessary condition for heights which gives a classification of those functions. Then we provide an equivalent condition and a new construction method for topological conjugacy for a nonempty subset of the mentioned continuous functions.Furthermore, we prove that topological conjugacy is a sufficient but not necessary condition for equal heights of piecewise monotonic functions. Finally, some examples are given to illustrate our results.
机构地区 滨州学院理学院
出处 《数学学报(中文版)》 CSCD 北大核心 2018年第2期243-260,共18页 Acta Mathematica Sinica:Chinese Series
基金 山东省自然科学基金资助项目(ZR2017MA019)
关键词 迭代 逐段单调函数 高度 拓扑共轭 iteration piecewise monotonic function height topological conjugacy
  • 相关文献

参考文献2

二级参考文献16

  • 1Blokh A, Coven E, Misiurewicz M, et al. Roots of continuous piecewise monotone maps of an interval. Acta Math Univ Comenian, 1991, 60:3-10.
  • 2de Melo W, van Strien S. OneFDimensional Dynamics. Berlin: Springer-Verlag, 1992.
  • 3Jarczyk W. Reversibility of interval homeomorphisms with no fixed points. Aequationes Math, 2002, 63:66 75.
  • 4Jarczyk W. Reversible interval homeomorphisms. J Math Anal Appl, 2002, 272:473 479.
  • 5Kuczma M. Functional Equations in a Single Variable. Warsaw: Polish Scientific Publishers, 1968.
  • 6Kuczma M, Choczewski B, Ger R. Iterative Functional Equations. Cambridge: Cambridge University Press, 1990.
  • 7Laitochov~ J. On conjugacy equations for iterative functional equations. Int J Pure Appl Math, 2006, 26:423-433.
  • 8Lesniak Z, Shi Y G. Topological conjugacy of piecewise monotonic functions of nonmonotonicity height /> 1. J Math Anal Appl, 2015, 423:1792 1803.
  • 9Li L, Yang D L, Zhang W N. A note on iterative roots of PM functions. J Math Anal Appl, 2008, 341:1482-1486.
  • 10Liu L, Jarczyk W, Li L, et al. Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2. Nonlinear Anal, 2012, 75:286 303.

共引文献6

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部