摘要
研究构造Birkhoff动力学函数的Santilli方法.首先,基于Cauchy-Kovalevskaya型方程解的存在性定理,采用反证法证明自治系统总有自治Birkhoff表示;其次,给出更简洁的方法证明Santilli第二方法可以被简化;找到Santilli第三方法中所隐含的一种等量关系,提出改进的Santilli第三方法,并研究该方法的MATLAB程序化计算;最后,总结全文并对结果进行讨论.
In this paper, we mainly study the simplification and improvement of Santilli’s methods in Birkhoffian system, which is a more general type of basic dynamic system. The theories and methods of Birkhoffian dynamics have been used in hadron physics, quantum physics, rotational relativity theory, and fractional dynamics. As is well known, Lagrangian inverse problem, Hamiltonian inverse problem, and Birkhoffian inverse problem are the main objects of the dynamic inverse problems. The results given by Douglas(Douglas J 1941 Trans. Amer. Math. Soc. 50 71) and Havas [Havas P 1957 Nuovo Cimento Suppl. Ser. X5 363] show that only the self-adjoint Newtonian systems can be represented by Lagrange’s equations, so the Lagrangian inverse problem is not universal for a holonomic constrained mechanical system.Furthermore, from the equivalence between Lagrange’s equation and Hamilton’s equation, Hamiltonian inverse problem is not universal. A natural question is then raised: whether there exists a self-adjoint dynamical model whose inverse problem is universal for holonomic constrained mechanical systems, in the field of analytical mechanics.An in-depth study of this issue in the 1980 s by R. M. Santilli shows that a universal self-adjoint model exists for a holonomic constrained mechanic system that satisfies the basic conditions of locality, analyticity, and formality.The Birkhoff’s equation is a natural extension of the Hamilton’s equation, which shows the geometric properties of a nonconservative system as a general symplectic structure. This more general symplectic structure provides the geometry for the study of the non-conservative system preserving structure algorithms. Therefore, it is particularly important to study the problem of the Birkhoffian representation for the holonomic constrained system.For the inverse problem of Birkhoff’s dynamics, studied mainly are the condition under which the mechanical systems can be represented by Birkhoff’s equations and the construction method of Birkhoff’s functions. However, due to the extensiveness and complexity of the holonomic nonconservative system, Birkhoff’s dynamical functions do not have so simple construction method as Lagrange function and Hamilton function. The research results of this issue are very few. The existing construction methods are mainly for three constructions proposed by Santilli [Santilli R M1983 Foundations of Theoretical Mechanics II(New York: Springer-Verlag) pp25-28], and there are still many technical problems to be solved in the applications of these methods.In order to solve these problems, this article mainly focuses on the following content. First, according to the existence theorem of Cauchy-Kovalevskaya type equations, we prove that the autonomous system always has an autonomous Birkhoffian representation. Second, a more concise method is given to prove that Santilli’s second method can be simplified. An equivalent relationship implied in Santilli’s third method is found, an improved Santilli’s third method is proposed, and the MATLAB programmatic calculation of the method is studied. Finally, the full text is summarized and the results are discussed.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第5期12-20,共9页
Acta Physica Sinica
基金
国家自然科学基金(批准号:51175042
61402202
11401259)资助的课题~~