期刊文献+

反应扩散模型在图灵斑图中的应用及数值模拟 被引量:7

Application of reaction diffusion model in Turing pattern and numerical simulation
下载PDF
导出
摘要 反应扩散方程模型常被用于描述生物学中斑图的形成.从反应扩散模型出发,理论推导得到GiererMeinhardt模型的斑图形成机理,解释了非线性常微分方程系统的稳定常数平衡态在加入扩散项后会发生失稳并产生图灵斑图的过程.通过计算该模型,得到图灵斑图产生的参数条件.数值方法中采用一类有效的高精度数值格式,即在空间离散条件下采用Chebyshev谱配置方法,在时间离散条件下采用紧致隐积分因子方法.该方法结合了谱方法和紧致隐积分因子方法的优点,具有精度高、稳定性好、存储量小等优点.数值模拟表明,在其他条件一定的情况下,系统控制参数κ取不同值对于斑图的产生具有重要的影响,数值结果验证了理论结果. Turing proposed a model for the development of patterns found in nature in 1952. Turing instability is known as diffusion-driven instability, which states that a stable spatially homogeneous equilibrium may lose its stability due to the unequal spatial diffusion coefficients. The Gierer-Mainhardt model is an activator and inhibitor system to model the generating mechanism of biological patterns. The reaction-diffusion system is often used to describe the pattern formation model arising in biology. In this paper, the mechanism of the pattern formation of the Gierer-Meinhardt model is deduced from the reactive diffusion model. It is explained that the steady equilibrium state of the nonlinear ordinary differential equation system will be unstable after adding of the diffusion term and produce the Turing pattern.The parameters of the Turing pattern are obtained by calculating the model. There are a variety of numerical methods including finite difference method and finite element method. Compared with the finite difference method and finite element method, which have low order precision, the spectral method can achieve the convergence of the exponential order with only a small number of nodes and the discretization of the suitable orthogonal polynomials. In the present work, an efficient high-precision numerical scheme is used in the numerical simulation of the reaction-diffusion equations.In spatial discretization, we construct Chebyshev differentiation matrices based on the Chebyshev points and use these matrices to differentiate the second derivative in the reaction-diffusion equation. After the spatial discretization, we obtain the nonlinear ordinary differential equations. Since the spectral differential matrix obtained by the spectral collocation method is full and cannot use the fast solution of algebraic linear equations, we choose the compact implicit integration factor method to solve the nonlinear ordinary differential equations. By introducing a compact representation for the spectral differential matrix, the compact implicit integration factor method uses matrix exponential operations sequentially in every spatial direction. As a result, exponential matrices which are calculated and stored have small sizes, as those in the one-dimensional problem. This method decouples the exact evaluation of the linear part from the implicit treatment of the nonlinear reaction terms. We only solve a local nonlinear system at each spatial grid point.This method combines with the advantages of the spectral method and the compact implicit integration factor method,i.e., high precision, good stability, and small storage and so on. Numerical simulations show that it can have a great influence on the generation of patterns that the system control parameters take different values under otherwise identical conditions. The numerical results verify the theoretical results.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第5期45-53,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61573008 61703290) 国防科技重点实验室基金(批准号:6142A050202) 辽宁省教育厅基金(批准号:L201604)资助的课题~~
关键词 反应扩散方程 Gierer-Meinhardt模型 图灵斑图 Chebyshev谱方法 reaction-diffusion equation Gierer-Meinhardt model Turing pattern Chebyshev spectral method
  • 相关文献

参考文献2

二级参考文献25

  • 1David J Wollkind,Laura E Stephenson.Chemical Turing pattern formation analyses:comparision of theory with experiment[ J].SIAM J Appl Math,2000,61(2):387-431.
  • 2Hill R,Merkin J H.Patten formation in a coupled cubic autocatalator system[ J].IMA J Appl Math,1994,53(3):265-322.
  • 3Hill R,Merkin J H,Needham D J.Stable pattern and standing wave formtion in a simple isothermal cubic autocatalytic reaction scheme[ J ].Journal of Engineering Mathematics,1995,29 (3):413-436.
  • 4Hill R,Merkin J H.The effects of coupling on pattern formation a simple autocatalytic system[ J].IMA J Appl Math,1995,54(3):257-281.
  • 5Metcalf M J,Merkin J H.Reaction diffusion waves in coupled isothermal autocatalytic chemical systems[J].IMA Journal of Applied Mathematics,1993,51(3):269-298.
  • 6Collier S M,Merkin J H,Scott S K.Multistability,oscillations and travelling waves in a product-feedback autocatalator model-Ⅱ:The initiation and propagation of travelling waves[ J].Phil Trans R Soc Lond A,1994,349(1691):389-415.
  • 7Merkin J H,Needham D J,Scott S K.Coupled reaction-diffusion waves in an isotherml autocatalytic chemical system[ J].IMA J Appl Math,1993,50(1):43-76.
  • 8Dezso Hovvath,Agota Toth,Turing patterns in a single-step autocatalytic reaction[ J].J Chem Soc Faraday Trans,1997,93(24):4301-4303.
  • 9Merkin J H,Sevcikova H,Snita D.The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system[J].IMA J Appl Math,2000,64(2):157-188.
  • 10Merkin J H,Sevcikova H.The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields[ J].IMA J Appl Math,2005,70(4):527-549.

共引文献14

同被引文献23

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部