期刊文献+

石墨烯碳纳米管复合结构渗透特性的分子动力学研究 被引量:4

Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure
下载PDF
导出
摘要 采用经典分子动力学方法研究了压力驱动作用下水在石墨烯碳纳米管复合结构中的渗透特性.研究结果表明,水分子渗透通过石墨烯碳纳米管复合结构的渗透率明显高于石墨烯碳纳米管组合结构.水在石墨烯碳纳米管复合结构中的渗透率随着压强的升高而增大,随着电场强度的增大而减小.考虑了温度和复合结构中双碳管轴心距对水渗透性的影响规律.系统温度越高,水的渗透率越高;随着双碳管轴心距的增加,水的渗透率逐渐降低.通过计算分析水流沿渗透方向的能障分布,解释了各参数变化对水在石墨烯碳管复合结构中渗透特性的影响机理.研究结果将为基于石墨烯碳管复合结构的新型纳米水泵设计提供一定的理论依据. In this paper, the classical molecular dynamics method is used to investigate the permeability of pressure-driven water fluid in the hybrid structure of graphene-carbon nanotube(CNT). The results indicate that the permeability of water molecules for the hybrid structure of graphene-CNT is obviously higher than that for the assembled structure of graphene-CNT. The combination between the graphene sheet and CNT in the hybrid structure is found to be a key point to improve the permeability of water molecules. Subsequently, the potential of mean force(PMF) is calculated in order to explain the influences of the combined structure on the permeabilities for the water fluid passing through both the hybrid and assembled graphene-CNT structures. The result shows that the PMF for the water molecules penetrating through the assembled structure is larger than that for the hybrid structure appreciably. It implies that the structure of the combined chemical bonds in the hybrid structure can efficiently improve the permeability of water molecules. As for the water penetrating through the hybrid structured graphene-CNT, the permeability of water increases with water pressure rising, and decreases with the electric field intensity increasing. The water molecules cannot pass through the proposed hybrid structure below a pressure threshold of 100 MPa. The permeability of water in the hybrid structure decreases with the increasing charge quantity on CNT below a threshold of 0.8 e. The PMF for water penetrating through the hybrid structure decreases with charge quantity decreasing. The results suggest that the water permeability can be controlled by regulating the water pressure and the electric field intensity. Furthermore, the influences of the temperature and the axis spacing of two CNTs in the hybrid structure on the water permeability are considered. The permeability of water in the hybrid structure increases with the increasing temperature above a threshold of 200 K. The PMF for water penetrating through the hybrid structure increases with the decreasing temperature. Interestingly, the water permeability decreases with the increasing axis spacing. As the axial spacing increases, the water permeability decreases gradually and even approaches to two times of the permeability in the case of the hybrid structure with a single CNT channel. The findings can provide a theoretical basis for designing nanopumps or osmotic membranes based on the graphene-CNT hybrid structures.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第5期213-220,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11472117 11372298 11672063) 江苏省自然科学基金(批准号:BK20140556)资助的课题~~
关键词 石墨烯碳纳米管复合结构 渗透率 分子动力学 graphene-carbon nanotube hybrid structures water permeability molecular dynamics
  • 相关文献

参考文献1

二级参考文献160

  • 1Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T. I.; Chowdhury, R.; Ying, M.; Xu, L.; Li, M.; Chung, H. J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y.W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A. Science 2011, 333 (6044), 838. doi: 10.1126/science.1206157.
  • 2Jeong, J.W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y.; Lee, W.; Xia, J.; Cheng, H.; Huang, Y.; Choi, W. S.; Bretl, T.; Rogers, J. A. Adv. Mater. 2013, 25 (47), 6839. doi: 10.1002/adma.201301921.
  • 3Jeong, J.W.; Kim, M. K.; Cheng, H.; Yeo, W. H.; Huang, X.; Liu, Y.; Zhang, Y.; Huang, Y.; Rogers, J. A. Adv. Healthc. Mater. 2014, 3 (5), 642. doi: 10.1002/adhm.201300334.
  • 4Tao, H.; Brenckle, M. A.; Yang, M.; Zhang, J.; Liu, M.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; McAlpine, M.C.; Rogers, J. A.; Kaplan, D. L.; Omenetto, F. G. Adv. Mater. 2012, 24 (8), 1067. doi: 10.1002/adma.201103814.
  • 5Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S. H.; Kang, Z.; Huang, Y.; Rogers, J. A.Adv. Mater. 2013, 25 (20), 2773. doi: 10.1002/adma.201204426.
  • 6Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y.; Yu, K. J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y. S.; Yeo, W. H.; Park, J. S.; Song, J.; Li, Y.; Huang, Y.; Gorbach, A. M.; Rogers, J. A. Nat. Mater. 2013, 12 (10), 938. doi: 10.1038/nmat3755.
  • 7Huang, X.; Yeo, W. H.; Liu, Y.; Rogers, J. A. Biointerphases 2012, 7 (1), 52. doi: 10.1007/s13758-012-0052-8.
  • 8Huang, X.; Cheng, H.; Chen, K.; Zhang, Y.; Zhang, Y.; Liu, Y.; Zhu, C.; Ouyang, S. C.; Kong, G.W.; Yu, C.; Huang, Y.; Rogers, J. A. IEEE Trans. Biomed. Eng. 2013, 60 (10), 2848. doi: 10.1109/TBME.2013.2264879.
  • 9Huang, X.; Liu, Y.; Cheng, H.; Shin, W. J.; Fan, J. A.; Liu, Z.; Lu, C. J.; Kong, G.W.; Chen, K.; Patnaik, D.; Lee, S. H.; Hage-Ali, S.; Huang, Y.; Rogers, J. A. Adv. Funct. Mater. 2014, 24 (25), 3846. doi: 10.1002/adfm.201303886.
  • 10Hattori, Y.; Falgout, L.; Lee, W.; Jung, S. Y.; Poon, E.; Lee, J.W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y.; Su, Y.; Wang, X.; Liu, Z.; Xia, J.; Cheng, H.; Webb, R. C.; Bonifas, A. P.; Won, P.; Jeong, J.W.; Jang, K. I.; Song, Y. M.; Nardone, B.; Nodzenski, M.; Fan, J. A.; Huang, Y.; West, D. P.; Paller, A. S.; Alam, M.; Yeo, W. H.; Rogers, J. A. Adv. Healthc. Mater. 2014, 3 (10), 1597. doi: 10.1002/adhm.201400073.

共引文献36

同被引文献12

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部