期刊文献+

Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations 被引量:1

Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations
原文传递
导出
摘要 Humans have been exposed to many environmental challenges since their evolutionary origins in Africa and subsequent migrations to the rest of the world. A severe environmental challenge to human migrants was hypoxia caused by low barometric oxygen pressure at high altitudes. Several genome-wide scans have elucidated the genetic basis of human high-altitude adaptations.However, the dearth of functional variant information has led to the successful association of only a few candidate genes. In the present study, we employed a candidate gene approach and re-sequenced the EDAR locus in 45 Tibetan individuals to identify mutations involved in hypoxia adaptation. We identified 10 and five quantitative trait-associated mutations for oxygen saturation (SaO_2) and blood platelet count, respectively, at the EDAR locus. Among these, rs10865026 and rs3749110 (associated with SaO_2 and platelet count, respectively) were identified as functional candidate targets. These data demonstrate that EDAR has undergone natural selection in recent human history and indicate an important role of EDAR variants in Tibetan high-altitude adaptations. Humans have been exposed to many environmental challenges since their evolutionary origins in Africa and subsequent migrations to the rest of the world. A severe environmental challenge to human migrants was hypoxia caused by low barometric oxygen pressure at high altitudes. Several genome-wide scans have elucidated the genetic basis of human high-altitude adaptations.However, the dearth of functional variant information has led to the successful association of only a few candidate genes. In the present study, we employed a candidate gene approach and re-sequenced the EDAR locus in 45 Tibetan individuals to identify mutations involved in hypoxia adaptation. We identified 10 and five quantitative trait-associated mutations for oxygen saturation (SaO_2) and blood platelet count, respectively, at the EDAR locus. Among these, rs10865026 and rs3749110 (associated with SaO_2 and platelet count, respectively) were identified as functional candidate targets. These data demonstrate that EDAR has undergone natural selection in recent human history and indicate an important role of EDAR variants in Tibetan high-altitude adaptations.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第1期68-78,共11页 中国科学(生命科学英文版)
基金 supported by the National Natural Science Foundation of China (91131905, 30890030) Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13020500) Weng Hongwu Original Scientific Research Foundation, Peking University
关键词 Tibetan high altitude adaptation EDAR 进化起源 改编 西藏 变体 血小板计数 环境挑战 组织缺氧 候选人
  • 相关文献

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部