期刊文献+

Affine-periodic solutions by averaging methods 被引量:1

Affine-periodic solutions by averaging methods
原文传递
导出
摘要 This paper concerns the existence of affine-periodic solutions for perturbed affine-periodic systems.This kind of affine-periodic solutions has the form of x(t+T)≡Qx(t) with some nonsingular matrix Q,which may be quasi-periodic when Q is an orthogonal matrix. It can be even unbounded but x(t)/|x(t)| is quasi-periodic,like a helical line. for example x(t)=e^(at)(cos ωt, sin ωt), when Q is not an orthogonal matrix. The averaging method of higher order for finding affine-periodic solutions is given by topological degree. This paper concerns the existence of affine-periodic solutions for perturbed affine-periodic systems.This kind of affine-periodic solutions has the form of x(t+T)≡Qx(t) with some nonsingular matrix Q,which may be quasi-periodic when Q is an orthogonal matrix. It can be even unbounded but x(t)/|x(t)| is quasi-periodic,like a helical line. for example x(t)=e^at(cos ωt, sin ωt), when Q is not an orthogonal matrix. The averaging method of higher order for finding affine-periodic solutions is given by topological degree.
出处 《Science China Mathematics》 SCIE CSCD 2018年第3期439-452,共14页 中国科学:数学(英文版)
基金 supported by National Basic Research Program of China (Grant No. 2013CB834100) National Natural Science Foundation of China (Grant Nos. 11571065,11171132 and 11201173)
关键词 affine-periodic solutions averaging method topological degree 平均方法 周期 仿射 矩阵 非退化 螺旋状 直角 拓扑
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部