期刊文献+

基于软件工程与叠层深度学习的工件文本识别算法 被引量:1

Workpiece text recognition algorithm based on software engineeringand stack in-depth learning
下载PDF
导出
摘要 目的解决当前图像特征训练不充分,系统软件不规范,导致文本识别不准确的问题。方法分别从系统软件开发和识别算法验证的角度出发,提出基于软件工程与叠层深度学习的工件文本识别算法。首先,根据系统功能需求,进行软件模块化分析,设计出集算法计算、硬件控制、逻辑通信和数据存储于一体的系统架构。然后,基于自适应阈值分割与图像校正,对工件文本图像进行预处理,得到准确的包含文本目标的二值图像区域。最后,利用叠层DAE构成L层深度网络,计算权值矩阵,达到对文本图像轮廓特征深度训练学习的目的。结果利用所提算法获得了复杂干扰条件下的文本识别结果。结论实验测试结果显示:与当前文本识别技术相比,本文算法拥有更高的准确性与现场实用性。 Purposes-To solve the problem of inaccurate text recognition which is caused by insufficient training of the current image feature and nonstandard system software. Methods-The text recognition algorithm based on software engineering and stack in-depth learning is proposed from the point of view of system software development and recognition algorithm verification. First of all, the software module is analyzed on the basis of the functional requirements of the system, and the system architecture is designed, which is integrated with the algorithm calculation, hardware control, logic communication and data storage. Secondly, the text image of the workpiece is pretreated on the basis of the adaptive threshold segmentation and image correction, and the binary image region containing the text target is obtained accurately. Finally, the laminated DAE is used to form the deep network of Layer L, and the weight matrix is calculated to achieve the purpose of the deep training of the text im- age contour feature. Results-The proposed algorithm is used to obtain the text recognition results under complex interference conditions. Conclusions-The experimental results show that the system has higher accuracy and practicability in comparison with the current text recognition system.
作者 黄寅
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2018年第1期48-51,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
关键词 工件图像 文本识别 阈值分割 深度网络 训练学习 workpiece image text recognition threshold segmentation deep network training and learning
  • 相关文献

参考文献7

二级参考文献98

  • 1王华,丁晓青,哈力木拉提.多字体多字号印刷维吾尔文字符识别[J].清华大学学报(自然科学版),2004,44(7):946-949. 被引量:18
  • 2哈力木拉提,阿孜古丽.多字体印刷维吾尔文字符识别系统的研究与开发[J].计算机学报,2004,27(11):1480-1484. 被引量:36
  • 3孙楠,刘志文.一种改进的中文文档图像倾斜检测方法[J].计算机仿真,2006,23(9):184-187. 被引量:8
  • 4王玲.基于LBP的特征提取研究[D].北京交通大学,2009.
  • 5Spitz A L.Determination of the script and language content of document images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(3):235-245.
  • 6Pal U,Chaudhuri B B.Identification of different script lines from multi-script documents[J].Image and Vision Computing,2002,20..945-954.
  • 7Elgammal A M,Ismail M A.Techniques for language identification for hybrid arabic-english document images[C]// Proc of 6th International Conference on Document Analysis and Recognition.Seattle,USA:IEEE Computer Society,2001:1100-1104.
  • 8Hochberg J,Kelly P,Thomas T.Automatic script identification from images using cluster-based templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):176-181.
  • 9Nakayama T,Spitz A L.European language determination from image[C]// Proc of the International Conference on Document Analysis and Recognition.Tsukuba,Japan:IEEE Computer Society,1993:159-162.
  • 10Busch A,Boles W W,Sridharan S.Texture for script identification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(11):1720-1732.

共引文献60

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部