期刊文献+

聚类分析在船舶碰撞中的应用分析 被引量:1

The application of clustering analysis in ship collision
下载PDF
导出
摘要 为避免船舶发生碰撞,提高船舶航行安全性,本文首先建立船舶碰撞模型。基于有限样本点,采用神经网络算法对其进行聚类分析,使得样本拟合误差收敛,具有较高的稳定性,并且收敛精度较高,可为工程实践提供参考。 In order to avoid ship collision,and improve the safety of navigation of ships,this paper established the model of collision first. Based on limited sample points,using the neural network algorithm for clustering analysis,makes the sample fitting error convergence and has high stability,this method can provide reference for engineering practice.
作者 陈勇
机构地区 四川工商学院
出处 《舰船科学技术》 北大核心 2016年第14期163-165,共3页 Ship Science and Technology
关键词 碰撞 聚类分析 神经网络算法 F分布 collision clustering analysis neural network algorithm F distribution
  • 相关文献

参考文献6

二级参考文献39

  • 1姜园,张朝阳,仇佩亮,周东方.用于数据挖掘的聚类算法[J].电子与信息学报,2005,27(4):655-662. 被引量:68
  • 2潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策,2006,21(7):792-795. 被引量:53
  • 3Mao J,Jain A K.A self-organizing network for hyper ellipsoidal clustering[J].IEEE Trans in Neural Networks, 1996,1 (7) : 16-29.
  • 4De Castro L N, Von Zuben F J.An evolutionary immune system network for data clustedng[C]//Proeeedings of the 6th Brazilian Symposium on Neural Networks,Rio de Janeiro,2000:84-89.
  • 5Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press, 1981.
  • 6Jajuga K. L1 -norm based fuzzy clustering[J].Fuzzy Sets and Sys- tems, 1991,39( 1 ) :43-50.
  • 7Bobrowski L,Bezdek J C.C-mean clustering with the L1 and L∞norms[J].IEEE Transactions on SMC, 1991,21(3) :545-554.
  • 8Gath l,Iskoz A S, Cutsem B V.Data induced metric and fuzzy clustering of non-convex patterns of arbitrary shape[J].Patten Rec- ognition Letters, 1997,17: 541-553.
  • 9Li Z, Yuan J, Zhang W.Fuzzy C-mean algorithm with morphology similarity distance[C]//Proceedings of 6th International Confer- ence on Fuzzy Systems and Knowledge Discovery,Tianjin,China, 2009,3 : 90-94.
  • 10Li Z,Ding Q,Zhang W.A comparative study of different distmcos for similarity ~stimation[J].Communications in Computer and Infor- mation Seienee,2011,134(1 ) :483-488.

共引文献139

同被引文献4

引证文献1

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部