期刊文献+

非高斯噪声中基于分数低阶矩协方差MME检测的频谱感知算法 被引量:4

Spectrum Sensing Under Non-Gaussian Noise Using Fractional Lower Order Moments Covariance MME Detection
下载PDF
导出
摘要 针对传统的最大最小特征值之比的频谱感知算法(MME)在非高斯噪声频谱感知性能下降乃至失效的问题,提出了一种基于分数低阶矩采样协方差的改进MME算法。该算法先用分数低阶矩对观测数据进行预处理,获得分数低阶矩协方差矩阵,再求矩阵的最大最小特征值之比作为统计量。本文采用了Alpha分布和Laplace分布拟合非高斯噪声环境,蒙特卡罗(Monte Carlo)仿真结果表明,非高斯噪声中基于分数低阶矩的协方差MME频谱感知算法的检测性能明显优于MME。 In view of the problem that the performance of the traditional spectrum sensing algorithm of the of the maximum minimum eigenvalues (MME) (noise environment is assumed to be a Ganssian distribution) may degrade severely due to the heavy tail characteristics of the probability density function (PDF) of the non-Gaussian noise in the actual environment. To this end, an improved the fractional lower order moment sampling eovariance MME that does not require any a priori knowledge about the signal, channels and noise is presented in this paper. The algorithm use fractional lower order moment of observation data preprocessing, scoring low moments of covariance matrix, and maximum ratio of the minimum eigenval- ue of matrix as a statistic. This paper adopted the Alpha and Laplace distribution fitting non-Gaussian noise environment, Monte Carlo simulation results show that the performance of the fractional lower order moment of covariance MME is superi- or to MME in non-Ganssian situation.
出处 《信号处理》 CSCD 北大核心 2018年第2期235-241,共7页 Journal of Signal Processing
基金 国家自然科学基金(61501223)
关键词 认知无线电 频谱感知 拉普拉斯噪声 分数低阶矩 采样协方差 cognitive radio spectrum sensing Laplacian noise fractional lower order moments sampling covariance
  • 相关文献

参考文献5

二级参考文献59

  • 1Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 2Cabric D, Mishra S M, and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios[C]. Proc. of 38th Asilomar Conf. Signals, System, and Computers, Monterey, CA, Nov. 2004: 772-776.
  • 3Digham F, Alouini M, and Simon M. On the energy detection of unknown signals over fading channels[C]. IEEE Int. Conf. Commun., Seattle, Washington, USA, May 2003, Vol. 5: 3575-3579.
  • 4Tang H. Some physical layer issues of wide-band cognitive radio systems[C]. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA. Nov. 2005: 151-159.
  • 5Sutton P D, Nolan K E, and Doyle L E. Cyclostationary signatures in practical cognitive radio applications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 13-24.
  • 6Zeng Y and Liang Y C. Maximum-minimum eigenvalue detection for cognitive radio[Cl. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. (PIMRC), Athens, Greece, Sep. 2007.
  • 7Penna F and Garello R. Theoretical performance analysis of eigenvalue-based detection, http://arxiv.org/pdf /0907. 1523v2, 2009.9.
  • 8王颖喜,卢光跃.基于空间谱的频谱感知办法[C].第三届全国通信新理论与新技术学术大会,宁波,2009,10.
  • 9Quan z, Cui S, Poor H V, and Sayed A H. Collaborative wideband sensing for cognitive radios[J]. IEEE Signal Processing Magazine, 2008, 25(6): 60-73.
  • 10Sahai A, Hoven N, and Tandra. Some fundamental limits on cognitive radio[C]. Allerton Conf. on Control, Communication, and Computation, Monticello, Oct. 2004. doi=10.1.1.123.5645&zrep.

共引文献71

同被引文献22

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部