期刊文献+

基于多视图Tri-Training的微博用户性别判断 被引量:2

Microblog User Gender Recognition with Multi-View and Tri-Training Learning
下载PDF
导出
摘要 互联网技术不断发展,新浪微博作为公开的网络社交平台拥有庞大的活跃用户.然而由于用户数量庞大,且个人信息并不一定真实,造成训练样本打标困难.本文采用了一种多视图tri-training的方法,构建三个不同的视图,利用这些视图中少量已打标样本和未打标样本不断重复互相训练三个不同的分类器,最后集成这三个分类器实现用户性别判断.本文用真实用户数据进行实验,发现和单一视图分类器相比,使用多视图tri-training学习训练后的分类器准确性更好,且需要打标的样本更少. With the high pace of internet technology, microblog, an opening free social network, has an awful lot of active users. However, the number of sina microblog users is very large and the personal information is not always true, leading to the situation that it is hard to label the user's gender. In this study, multi-view and tri-training learning method are used to solve these problems. First three different views are constructed and three different classifiers are trained with a small number of labeled samples. And then three different classifiers are trained repeatedly by unlabeled samples. Finally, we integrate three classifiers into one to judge the user gender. We use the real user data and find that the classifier using the multi-view and tri-training learning is better than the performance of the single view classifier and needs less labeled data.
作者 孙启蕴
出处 《计算机系统应用》 2018年第2期240-244,共5页 Computer Systems & Applications
关键词 性别判断 多视图学习 tri-training算法 数据挖掘 gender recognition multi-view learning tri-training data mining
  • 相关文献

参考文献5

二级参考文献75

  • 1BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training [ C]// COLT' 98: Proceedings of the llth Annum Conference on Computational Learning Theory. New York: ACM Press, 1998:92 - 100.
  • 2HAHN S, LADNER R, OSTENDORF M. Agreement/disagreement classification: exploiting unlabeled data using contrast classifiers [ C]// Proceedings of the 2006 Human Language Technology Con- ference of the NAACL. Stroudsburg: Association for Computational Linguistics, 2006:53-56.
  • 3GUZ U, CUENDET S, HAKKANI-TUR D, et al. Multi-view semi- supervised learning for dialog act segmentation of speech [ J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(2) : 320 -329.
  • 4ZHOU Z H, LI M. Semi-supervised learning by disagreement [ J]. Knowledge and Information Systems, 2010, 24(3): 415 -439.
  • 5BOUSMALIS K, MORENCY L, PANTIC M. Modeling hidden dy- namics of muhimodal cues for spontaneous agreement and disagree- ment recognition [ C]// FG 2011 : Proceedings of the Ninth IEEE International Conference on Automatic Face and Gesture Recogni- tion. Piscataway: IEEE Press, 2011: 746-752.
  • 6ANDREAS J, ROSENTHAL S, McKEOWN K. Annotating agree- ment and disagreement in threaded discussion [ C]// LREC 2012: Proceedings of the 8th International Conference on Language Re- sources and Evaluation. Istanbul: European Language Resources Association, 2012:813 -816.
  • 7CHRISTOUDIAS C, URTASUN R, DARRELL T. Multi-view learn- ing in the presence of view disagreement [ EB/OL]. [2013-04-23]. http://uai, sis. pitt. edu/papers/08/p88-christoudias, pdf.
  • 8LI G, CHANG K, HOI S. Multi-view semi-supervised learning with consensus [ J]. IEEE Transactions on Knowledge and Data Engi- neering, 2012, 24(11): 2040-2051.
  • 9张哲,牟瑛娜,苗峰.桥梁结构基于性能的抗震设计方法的应用研究[C]//第二届结构工程新进展国际论坛论文集.北京:中国建筑工业出版社,2008:205-208.
  • 10OH J H, YAMADA I, TORISAWA K, et al. Co-STAR: a co-train- ing style algorithm for hyponymy relation acquisition from structured and unstructured text [ C]// Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010:842 -850.

共引文献21

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部