期刊文献+

脂肪酸多元低共熔物的共晶质量比例、储热性能及其应用 被引量:6

Eutectic Mass Ratios,Thermal Energy Storage Properties and Applications of Multiple Fatty Acid Eutectics
下载PDF
导出
摘要 以单一脂肪酸癸酸(CA)、月桂酸(LA)、肉豆蔻酸(MA)、棕榈酸(PA)和硬脂酸(SA)为原料,使用Schrader公式和MATLAB软件分析了脂肪酸二元低共熔物(CA-LA和CA-MA)、三元低共熔物(CA-LA-PA、CA-LA-SA、CA-MA-PA和CA-MA-SA)和四元低共熔物(CA-LA-PA-SA和CAMA-PA-SA)的共晶相图。确定了以上8种脂肪酸低共熔物的共晶质量比例。采用差热扫描仪(DSC)测试了脂肪酸多元低共熔物的储热性能,测试结果表明:脂肪酸低共熔物的相变温度明显低于脂肪酸的相变温度,且随着低共熔物中组分的增加而降低。制备出的脂肪酸低共熔物的融化温度和融化焓值分别为15~31℃和127~155kJ/kg。 Five fatty acids,including capric acid(CA),lauric acid(LA),myristic acid(MA),palmitic acid(PA),and stearic acid(SA)were selected as raw materials.Eutectic phase diagrams of binary fatty acid eutectics(CA-LA and CA-MA),ternary fatty acid eutectics(CA-LA-PA,CA-LA-SA,CA-MA-PA and CAMA-SA)and quaternary fatty acid eutectics(CA-LA-PA-SA and CA-MA-PA-SA)were analyzed by Schrader equation and MATLAB software.The eutectic mass ratios of the above eight fatty acid eutectics were also determined.Thermal energy storage and release properties of multiple fatty acid eutectics were tested by DSC analysis.Results showed that the phase change temperatures of multiple fatty acid eutectics are significantly lower than those of pure fatty acids,and gradually decrease with the increase of the number of components in the mixture.Melting temperatures and melting enthalpies of multiple fatty acid eutectics are about 15-31℃ and 127-155 kJ/kg,respectively.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2018年第1期82-86,共5页 Journal of Materials Science and Engineering
基金 国家自然科学基金青年科学基金资助项目(51706092) 福建省中青年教师教育科研资助项目(JAT170445) 闽江学院引进人才科技预研项目(MJY16001) 福建省科技计划资助项目(2015H0030)
关键词 脂肪酸多元低共熔物 Schrader公式 共晶质量比例 储热性能 低温储能应用 multiple fatty acid eutectics schrader equation eutectic mass ratio thermal energy storageproperty low temperature thermal energy storage applications
  • 相关文献

参考文献3

二级参考文献18

  • 1王万军,龙永珍,孙振家,张术根.快速制备高岭石-二甲基亚砜插层复合物[J].中国非金属矿工业导刊,2005(3):8-10. 被引量:12
  • 2Yuan F. A Comprehensive Study of Phase Change Materials (PCMs) for Building Walls Applications [D]. Kansas City: University of Kansas, 2009.
  • 3Mondal S. Phase change materials for smart textiles - An overview[J]. Applied Thermal Engineering, 2008, 28(11 12) : 1536-1550.
  • 4Sharmaa A, Tyagib V V, Chena C R. et al. Review on thermal energy storage with phase change materials and applications[J]. Buddhib Renewable and Sustainable Energy Reviews, 2009, 13 (2) : 318-345.
  • 5Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: materials and applications [J]. Energy conversion and Management, 2004, 45 : 1597-1615.
  • 6Tyagi, Vineet Veer. Optimization of a phase change material wallboard for building use[J]. Renewable and Sustainable Energy Reviews, 2007, 11(6) :1146-1166.
  • 7Ahmet Sari. Form-stable paraffin/high density polyethylene composites as Solid-liquid phase change material for thermal energy storage: preparation and thermal properties [J]. Energy Convers Manage, 2004, 45 : 2033 -2042.
  • 8Youhei K, Kazuya Y, Takao A. Assembly behavior of double thermo-responsive block copolymers with controlled response temperature in aqueous solution [J].Journal of Colloid and Interface Science, 2009, 336: 67-72.
  • 9Ahmet S,AIi K. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8 9).1271-1277.
  • 10Zalba B, Marin JM, Cabeza L F, et al. Review on thermal energy storage with phase change material, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003, 23: 251-283.

共引文献48

同被引文献46

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部