期刊文献+

基于关联规则的门诊药房布局优化 被引量:1

Optimizing Layouts of Outpatient Pharmacy Based on Association Rules
原文传递
导出
摘要 【目的】随着门诊的日就诊人数逐渐增多,优化门诊药房药品摆放布局,能够有效提高整个药房系统的服务效率。【方法】选择处方数量最多的两个科室的处方数据,应用K-means聚类算法将数据集划分为4个子数据集,使用Apriori算法对4个子数据集进行关联规则挖掘,得到31条药品有效规则和18条药类有效规则。【结果】综合药类和药品有效规则中挖掘出的信息,结合国家药品储存陈列规范,在得到某医院门诊药房的药房管理专家认可的情况下,设计出药类和药品的大致布局。【局限】只提取两个科室的处方数据,用于关联规则分析的处方数据不够完善。【结论】将关联规则方法和K-means聚类算法应用于解决门诊药房的药品陈列布局问题,用数据支撑药品陈列布局设计,并得到药房专家的认可。有利于减轻药剂师的工作强度,缩短患者取药时间,提高整个药房的服务效率。 [Objective] As the number of outpatient visits increases, optimizing the layout of pharmacy drugs can improve its service efficiency. [Methods] Firstly, we chose two departments with the largest number of prescriptions, which were divided into four sub groups with the K-means clustering method. Then, we used Apriori algorithm to explore the association rules among them. Finally, we obtained 31 effective drug layout rules and 18 effective drug class rules. [Results] We designed general layout rules for prescription drugs based on the collected data along with national drug storage and display standards, which were approved by the experts. [Limitations] We only studied prescription records from two departments, which might not yield the best association rules. [Conclusions] The proposed method could reduce the workload of pharmacists and the waiting time of patients, which improve the pharmacy services.
机构地区 四川大学商学院
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2018年第1期99-108,共10页 Data Analysis and Knowledge Discovery
关键词 关联规则 聚类分析 药房 布局优化 Association Rule Cluster Analysis Pharmacy Layout Optimization
  • 相关文献

参考文献6

二级参考文献62

  • 1田亮,程耕国.基于SSH2的物资管理系统研究与实现[J].软件导刊,2010,9(5):91-93. 被引量:9
  • 2耿素云.集合论与图论[M].北京:北京大学出版社,1997.
  • 3邓维斌.SPSSl9(中文版)统计分析实用教程[M].北京:电子工业出版社.2012.
  • 4赵贤,张志强,黄民,王磊.基于最小时间算法的自动化药房系统优化设计[J].北京信息科技大学学报,2013,28(3):39-42.
  • 5陈红鸽,朱姗薇.我院自动化门诊药房的建立与运行[J].中国药房,2007,18(31):2426-2427. 被引量:37
  • 6Han J, Kamber M. Data mining: Concepts and techniques[M]. San Mateo: Morgan Kaufmann, 2000.
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, New York, USA, 1993, 22(2): 207-216.
  • 8Brin S, Motwani R, Silverstein C. Beyond market baskets: Generalizing association rules to correlations[C]// Proceedings of the 1997 CM SIGMOD International Conference on Management of Data, New York, USA, 1997, 26(2): 265-276.
  • 9Tsur D, Ullman J D, Abiteboul S, et al. Query flocks: A generalization of association-rule mining[C]// Pro- ceedings of the 1998 ACM SIGMOD International Conference on Management of Data, New York, USA, 1998, 27(2): 1 -12.
  • 10Agrawal R, Srikant R. Fast algorithms for mining association rules[C]// Proceedings of the 20th International Conference on Very Large Data Bases, San Francisco, USA, 1994: 487-499.

共引文献79

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部