期刊文献+

枯叶蛱蝶扑翼飞行的力学分析 被引量:1

Mechanical analysis on flapping flight behavior of Kallima inachus Doubleday
原文传递
导出
摘要 模仿昆虫扑翼飞行的飞行器具有重量轻、质量小、噪音低、效率高、隐蔽性好等优点,在军用、民用领域被广泛地关注与应用。枯叶蛱蝶是典型的扑翼昆虫,在连续上升飞行过程中会出现停顿和跃升的现象。为了研究停顿和跃升现象的产生原因,对枯叶蛱蝶的翅型和扑翼行为进行了力学分析。通过测量鳞翅结构参数,记录飞行行为,运用能量守恒与动量守恒原理,考虑生物能的作用,视空气为不可压缩颗粒,建立了数学模型模拟枯叶蛱蝶飞行情况。结果表明,扑翼行为通过改变飞行动力的动量和分力大小来影响枯叶蛱蝶的飞行轨迹,鳞翅形状则通过改变飞行动力的大小来影响枯叶蛱蝶的飞行轨迹,扑翼行为导致停顿和跃升现象的产生。本文为设计扑翼型飞行器提供了力学仿生学基础与生物学模型,为进一步设计出更优化的仿生飞行器提供科学依据。 By imitating insects,the aircraft with flapping wings has the advantages of light weight,small mass,low noise,high efficiency and good hidden property.The butterfly Kallima inachus Doubleday is a kind of typical flapping-wing insect.It shows pause and jump behavior in the process of continuous upward flight.In order to reveal the causes of the pause and jump phenomenon,the mechanical analysis of the wing forms and flight behavior of K.inachus was carried out.The mathematical simulation model of flapping flight was established by measuring the structure parameters of lepidotic wings,recording the flapping behavior,using the principle of energy conservation and momentum conservation,considering the air as an incompressible particles and the role of bioenergy.The results indicated that the flapping behavior influenced the flight path of K.inachus by changing the flight dynamics of momentum and the size of force component.The shape of lepidotic wings affected the flight path by changing the size of flight dynamics.And the behavior of flapping wing leads to pause and jump in flight process.This article provides a mechanical bionic type and biology model for designing aircraft with flapping wing as well as scientific basis for optimizing the bionic aircraft.
出处 《生物资源》 CAS 2018年第1期57-63,共7页 Biotic Resources
基金 中国林业科学研究院青年培育项目(CAFYBB2017QA013) 云南省技术创新人才培养项目(2014HB068)
关键词 枯叶蛱蝶 仿生学 扑翼飞行 数学模型 Kallima inachus bionics flapping flights mathematical model
  • 相关文献

参考文献4

二级参考文献42

  • 1孙茂,黄华.微型飞行器的仿生力学——蝴蝶飞行的气动力特性[J].北京航空航天大学学报,2006,32(10):1146-1151. 被引量:9
  • 2马兴瑞,于登云,孙京,胡成威.空间飞行器展开与驱动机构研究进展[J].宇航学报,2006,27(6):1123-1131. 被引量:59
  • 3SANE S P,DICKINSON M H.The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J].J.Exp.Biol.,2002,205:1087-1096.
  • 4ZBIKOWSKI R.On aerodynamic modeling of an insectlike flapping wing in hover for micro air vehicles[J].Phil.Trans.R.Soc.Lond.,2002,A360:273-290.
  • 5BACKENBURY J H.Kinematics of take-off and climbing fight in butterflies[J].J.Zool.Lond.,1991,244; 251-270.
  • 6BETTS C R,WOOTTON R J.Wing shape and fight behavior in butterflies (lepidoptera:papilionoidea and hesperioidea):a preliminary analysis[J].J.Exp.Biol.,1988,138:271-288.
  • 7DUDLEY R.Biomechanics of flight in neotropical butterflies:morphometrics and kinematics[J].J.Exp.Biol.,1990,150,37-53.
  • 8SRYGLEY R B,THOMAS A L R.Unconventional liftgenerating mechanisms in free-flying butterflies[J].Nature,2002,420:660-664.
  • 9KEI S,MASAKAZU S,TAKANORI S,et al.Study on flapping-of-wings flight of butterfly with experimental measurement[R].AIAA paper,2004,5368-5381.
  • 10向仲怀.蚕丝生物学[M]北京:中国林业出版社,2005.8-29:82-106:254-285.

共引文献50

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部