期刊文献+

碳纳米管-石墨烯-碳纳米纤维复合电极的制备及应用 被引量:5

Preparation and Application of Nanotubes/Graphene/Carbon Nanofiber Combined Electrode
下载PDF
导出
摘要 配制含乙酸钴和乙酸镍的氧化石墨烯-聚丙烯腈(Co^(2+)-Ni^(2+)/GO-PAN)纺丝液,经静电纺丝技术制成碳纳米级纤维GO-PAN,预氧化和碳化处理GO-PAN得到分级多孔碳纳米管/石墨烯-碳纳米纤维(CNTs/G-CNFs)复合材料,对其结构和性能进行表征。结果表明,GO还原的石墨烯(G)均匀分布CNTs/G-CNFs内部,碳纳米管(CNTs)大量生长在CNTs/G-CNFs表面,使材料比表面积高达223.8 m^2/g。将0.5 g CNTs/G-CNFs组装成电容去离子技术(CDI)电极,在Na Cl的质量浓度为200 mg/L、处理时间为10 min的条件下,对比发现其电吸附脱盐能力高于CNFs和G-CNFs电极,最大除盐量达8.17 mg/g、除盐效率20.47%;并且5次循环使用后,除盐量和除盐效率下降不大,证明这种分级多孔的电极材料具有优异的除盐性能和可再生循环吸附能力。 Graphene oxide/polyacrylonitrile electrostatic spinning(Co^2+-Ni^2+/GO-PAN)containing cobalt acetate and nickel acetate was prepared,the GO-PAN carbon nanofiber was made by electrostatic spinning technology.Unique hierarchical porous carbon nanotubes/graphene/carbon nanofibers(CNTs/G-CNFs)composites was obtained after GO-PAN pre-oxidation and carbonization,and the structure and property were characterized.The results showed that,graphene(G)reduced by GO distributed uniformly inside of carbon nanofibers,carbon nanotubes(CNTs)grew on the surface of CNTs/G-CNFs,which made the specific surface area of material reached to 223.8 m^2/g.The electrodes of CDI unit were made by 0.5 g of CNTs/G-CNFs,when mass concentration of Na Cl was 200 mg/L and the processing time was 10 min,compared with CNFs and G-CNFs electrodes,its electric adsorption ability was the best.The desalination capacity was 8.17 mg/g,the desalination rate was 20.47%,and after five times recycling,the desalination capacity and rate decreased slightly.It provided that,this hierarchical porous electrode material had excellent desalination performance and renewable cycle adsorption capacity.
出处 《水处理技术》 CAS CSCD 北大核心 2018年第3期21-25,29,共6页 Technology of Water Treatment
基金 泰山学者项目(201511080) 中国国家自然科学基金(51672059)
关键词 碳纳米管 石墨烯 碳纳米纤维 海水淡化 电容去离子技术 静电纺丝 carbon nanotubes graphene carbon nanofibers desalination capacitive deionization electrostatic spinning
  • 相关文献

参考文献4

二级参考文献75

  • 1查振林,余以雄,罗亚田,许顺红,李析和.电吸附技术及其在水处理中的应用[J].四川化工,2005,8(4):52-54. 被引量:10
  • 2陈榕,胡熙恩.电吸附技术的应用与研究[J].化学进展,2006,18(1):80-86. 被引量:40
  • 3李东风,王浩静,贺福,王心葵.T300和T700炭纤维的结构与性能[J].新型炭材料,2007,22(1):59-64. 被引量:46
  • 4莫剑雄.电容吸附去离子方法的研究[J].水处理技术,2007,33(8):20-22. 被引量:17
  • 5Polzot P, Laruelle S, Grugeon S, et al. Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries[J]. Nature, 2000, 407:496-499.
  • 6Nakayama Susumu, Sakamoto Masatomi. Preparation, Microstructure and Electrical Property of (Co+CoO) Mixture by Thermal Decomposition of [Co (NH3)6](C2O4)2 @ 4H2O[J]. Ceram Int, 2000, 26(2): 119-122.
  • 7Ma Ming-ying. Manufacture of Cobalt Oxide by Roasting-decomposition in Rotary Kiln[J]. Youse Jinshu (Yelian Bufen), 1999, 5:3-5.
  • 8Flipse C F J, Rouwelear C B, De Groot F M F. Magnetic Properties of CoO Nanoparticles[J]. Eur Phys J D, 1999, 9(1-4):479-481.
  • 9Sun Ju-tang, Yang Yi-yong, Yuan Liang-jie,etal. Micro-Method Powder X-ray Diffraction Analysis of Thermal Decomposition Product of Basic Cobalt Carbonate[J]. J Wuhan Univ( Nat Sci Ed), 2001,47(6):660(Ch).
  • 10李东风,王浩静,王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱[J].光谱学与光谱分析,2007,27(11):2249-2253. 被引量:52

共引文献45

同被引文献73

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部