期刊文献+

非奇异M-矩阵及其逆矩阵Hadamard积最小特征值的新估计

New Estimate for the Smallest Eigenvalue of Hadamard Product of Nonsingular M-matrices
下载PDF
导出
摘要 设A是非奇异M-矩阵,利用圆盘定理和逆矩阵元素的估计式,给出AoA^(-1)的最小特征值的一些新下界估计式.通过理论分析与数值算例,说明新估计式改进了现有的一些结果. If Ais a nonsingular M-matrix,some new lower bounds for the smallest eigenvalue of AoA^-1are given by using Disk theorem and estimation formula for the elements of inverse matrix.Theoretical analysis and numerical example show that the new bounds improve several results in the literature.
作者 刘新
出处 《兰州文理学院学报(自然科学版)》 2018年第1期21-23,45,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 四川省教育厅自然科学基金项目(15ZB0465)
关键词 M-矩阵 HADAMARD积 最小特征值 圆盘定理 M-matrix Hadamard product smallest eigenvalue Disk theorem
  • 相关文献

参考文献4

二级参考文献45

  • 1周平,赵慧.M-矩阵与M-矩阵的逆的Hadamard积的最小特征值下界的估计[J].四川理工学院学报(自然科学版),2011,24(6):729-732. 被引量:1
  • 2Fiedler M,Markham T.An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J] .Linear Algebra Appl,1988,101:1-8.
  • 3Yong Xuerong. Proof of a conjecture of Fiedler and Markham[J]. Linear Algebra Appl,2000,320:167-171.
  • 4Yong Xuerong, Wang Zheng.On a conjecture of Fiedler and Markham[J]. Linear Algebra Appl, 1999,288:259- 267.
  • 5Song Yongzhong. On an inequality for the Hadamard product of an M-matrix and its inverse [ J ]. Linear Algebra Appl,2000~305:99-105.
  • 6Chen Shencan. A lower bound for the minimum eigenvalue of the Hadamard product of matrices [ J ]. Linear Algebra Appl,2004,378:159-166.
  • 7LI Houbiao, Hung Tingzhu, Shen Shuqian, et al. Lower bounds for the minimum eigenvalue of Hadamardproduct of an M-maaix and its inverse [ J]. Linear Algebra Appl,2007,420:235-247.
  • 8LI Yaotang, Cheng Fubin, Wang Defeng. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse[J].Linear Algebra Appl,2009, 430:1423-1431.
  • 9LI Yaotang, LI Yanyan, Wang Ruiwu, et al. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices [J]. Linear Algebra Appl, 2010,432:536-545.
  • 10Vargar S.Minimal Gerschgorin sets [J].Pacific J. Math, 1965,15(2):719-729.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部