期刊文献+

私有云平台资源监控与优化系统 被引量:7

Resource Monitoring and Optimization System on Private Cloud Platform
下载PDF
导出
摘要 目前中大型的私有云集群通常分布在全国多数据中心且同时运行大量虚拟机实例,对其产生的大量监控数据进行实时分析与离线统计,将面临巨大的计算、存储与网络压力。为此,设计一个面向大型私有云的资源监控与优化系统。采用大数据方法对数据进行分布式计算,解决对大型私有云的监控问题,同时基于采集的监控数据,通过热迁移机制减少因集群物理资源分配不均匀导致的资源浪费。实验结果表明,该系统可以满足用户对私有云的实时监控与离线统计需求,并提升13%以上的物理资源利用率。 For enterprise level private cloud systems,thousands of virtual maclalne instances are ueployeu oil mU,Ul-,l~ data centers across the nation, which will generate massive raw data for the monitoring system to persist and process. This makes a significant pressure on computing, storage and network for monitoring system providing real-time monitor and statistical reports. Aiming at this problem, this paper designs a monitoring system for large scale private cloud by using whole set of big data method which makes the work distributed to solve the challenge mentioned above. Meanwhile, with the collected monitoring data, it uses thermal migration mechanism to reduce the waste of physical resources caused by unevenly distribution. Experimental result shows that this system can satisfy real-time monitoring as well as offline statistics and enhance above 13% physical resource utilization rate.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第3期1-7,共7页 Computer Engineering
基金 国家高技术研究发展计划项目(2015AA01A202)
关键词 监控系统 资源优化 自动化运维 私有云平台 分布式计算 monitoring system resource optimization automated operation and maintenance private cloud platform distributed computing
  • 相关文献

参考文献3

二级参考文献19

  • 1赵志峰,杨永康,仇佩亮.UPnP在多媒体通信穿越FW/NAT中的应用[J].电信科学,2004,20(6):10-14. 被引量:5
  • 2张树东,曹元大,廖乐健.资源调度中的资源信度模型和调度算法[J].小型微型计算机系统,2005,26(12):2140-2143. 被引量:14
  • 3程久军,李玉宏,程时端,马建.移动P2P系统体系结构与关键技术的研究[J].北京邮电大学学报,2006,29(4):86-89. 被引量:18
  • 4MELL P, GRANCE T. The NIST definition of cloud computing [ EB/OL]. [ 2013- 06- 25]. http://csrc, nist. gov/publications! nistpubs/800-145/SP800-145, pdf.
  • 5ARMBRUST M, FOX A, GRIFFITH R, et al. A view of cloud com- puting [J]. Communications of the ACM, 2010, 53(4): 50-58.
  • 6LEE Z Y, WANG Y, ZHOU W. A dynamic priority scheduling al- gorithm on service request scheduling in cloud computing [ C ]// Proceedings of the 2011 International Conference on Electronic and Mechanical Engineering and Information Technology. Piscataway: IEEE, 2011 : 4665 -4669.
  • 7MURATA Y, EGAWA R, HIGASHIDA M, et al. A history-based job scheduling mechanism for the vector computing cloud [ C ]// Proceedings of the 10th IEEE/IPSJ International Symposium on Ap- plications and the Internet. Piscatawav: IEEE. 2010:125 - 128.
  • 8WEI G, VASILAKOS A V, ZHENG Y, et al. A game theoretic method of fair resource allocation for cloud computing services [ J]. The Journal of Supercomputing, 2010, 54(2): 252-269.
  • 9LIN W, WANG J Z, CHEN L, et al. A threshold-based dynamic resource allocation scheme for cloud computing [ J]. Procedia Engi- neering, 2011, 23:695-703.
  • 10van NGUYEN H, DANG TRAN F, MENAUD J M. Autonomic vir- tual resource management for service hosting platforms [ C]/! Pro- ceedings of the 2009 ICSE Workshop on Software Engineering Chal- lenges of Cloud Computing. Washington, DC: IEEE Computer Soci- ety, 2009:1-8.

共引文献23

同被引文献51

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部