期刊文献+

一种高效用数据起源过滤机制 被引量:10

A Data Provenance Sanitization Mechanism for High Utility
下载PDF
导出
摘要 为解决现有起源过滤机制导致溯源效用低下的问题,提出一种数据起源过滤机制。扩展PROV数据模型,将其中的依赖关系泛化为不确定的依赖关系,并证明使用不确定的依赖关系进行溯源效用恢复的合理性。构建效用评估模型,定量地评估包含不确定依赖关系的过滤视图的效用。提出"删除+修复"的起源过滤新机制,删除敏感节点或边,并在保证溯源结果不增的前提下,引入不确定的依赖关系,恢复过滤视图的溯源效用。实验结果表明,与现有的典型起源过滤机制相比,采用该机制可得到具有更高效用的起源过滤视图。 To improve the low provenance utility provided by existed provenance sanitization mechanisms, a data provenance sanitization mechanism is proposed. PROV-DM model is extended to generalize the dependencies into uncertain dependencies. The rationality of recovering provenance utility by introducing uncertain dependencies is proved. An evaluation model for utility is built to quantitatively evaluate sanitized views with uncertain dependencies. A novel provenance sanitization mechanism of "delete and recover"is proposed to delete sensitive nodes or edges and then recover provenance utility by introducing uncertain dependencies in sanitized views under the premise that the result of provenance tracing is not increased. Experimental results show that the proposed mechanism can produce sanitized views with higher provenance utility,in comparison with existed typical sanitization mechanisms.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第3期144-150,共7页 Computer Engineering
基金 国家自然科学青年基金(61202019) 陕西省教育厅自然科学专项基金(17JK0087)
关键词 数据起源 起源安全 起源过滤 溯源效用 PROV数据模型 data provenance provenance security provenance sanitization provenance utility PROV data model
  • 相关文献

参考文献5

二级参考文献165

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2刘喜平,万常选.数据起源研究综述[J].科技广场,2005(1):47-52. 被引量:13
  • 3李亚子.数据起源标注模式与描述模型[J].现代图书情报技术,2007(7):10-13. 被引量:16
  • 4Wang Y Richard, Madnick Stuart E. A polygen model for heterogeneous database systems: The source tagging perspective//Proceedings of the 16th International Conference on Very Large Data Bases. Brisbane, Queensland, Australia, 1990:519-538.
  • 5Lanter D P. Design of a lineage-based meta-data base for GIS. Cartography and Geographic Information Systems, 1991, 18:255-261.
  • 6Woodruff A, Stonebraker M. Supporting fine-grained data lineage in a database visualization environment//Proceedings of the 13rd IEEE International Conference on Data Engineering. Birmingham, England, 1997:91-102.
  • 7Cui Y, Widom J, Wiener J L. Tracing the lineage of view data in a warehousing environment. The ACM Transactions on Database Systems, 2000, 25(2): 179-227.
  • 8Buneman P, Khanna S, Tan WC. Why and where, A characterization of data provenanee//Proceedings of the 17th International Conference on Data Engineering. London, UK 2001:316-330.
  • 9Simmhan Yogesh L, Plale Beth, Gannon Dennis. A survey of data provenance techniques. Computer Science Department: Indiana University, Bloomington IN: Technical Report IUB-CS-TR618, 2001.
  • 10Glavic Boris, Dittrich Klaus. Data provenance: A categorization of existing approaehes//Proceedings of the 6th MMC Workshop of BTW 2007. Aachen, Germany, 2007:227-241.

共引文献139

同被引文献53

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部