摘要
为解决现有起源过滤机制导致溯源效用低下的问题,提出一种数据起源过滤机制。扩展PROV数据模型,将其中的依赖关系泛化为不确定的依赖关系,并证明使用不确定的依赖关系进行溯源效用恢复的合理性。构建效用评估模型,定量地评估包含不确定依赖关系的过滤视图的效用。提出"删除+修复"的起源过滤新机制,删除敏感节点或边,并在保证溯源结果不增的前提下,引入不确定的依赖关系,恢复过滤视图的溯源效用。实验结果表明,与现有的典型起源过滤机制相比,采用该机制可得到具有更高效用的起源过滤视图。
To improve the low provenance utility provided by existed provenance sanitization mechanisms, a data provenance sanitization mechanism is proposed. PROV-DM model is extended to generalize the dependencies into uncertain dependencies. The rationality of recovering provenance utility by introducing uncertain dependencies is proved. An evaluation model for utility is built to quantitatively evaluate sanitized views with uncertain dependencies. A novel provenance sanitization mechanism of "delete and recover"is proposed to delete sensitive nodes or edges and then recover provenance utility by introducing uncertain dependencies in sanitized views under the premise that the result of provenance tracing is not increased. Experimental results show that the proposed mechanism can produce sanitized views with higher provenance utility,in comparison with existed typical sanitization mechanisms.
出处
《计算机工程》
CAS
CSCD
北大核心
2018年第3期144-150,共7页
Computer Engineering
基金
国家自然科学青年基金(61202019)
陕西省教育厅自然科学专项基金(17JK0087)
关键词
数据起源
起源安全
起源过滤
溯源效用
PROV数据模型
data provenance
provenance security
provenance sanitization
provenance utility
PROV data model