期刊文献+

催化裂解聚丙烯合成石墨烯碳纳米杂化材料及其电化学应用

Synthesis of Graphene-based Carbon Nano Hybrid Materials by Catalytic Cracking of Polypropylene and Study on the Applications in Electrochemistry
原文传递
导出
摘要 研究了氧化石墨烯(GO)负载Co-Ni催化剂原位催化聚丙烯(PP)进行三维石墨烯碳纳米杂化材料的合成,同时考察材料作为超级电容器电极的电化学应用。将乙酸钴和乙酸镍按比例加入GO水溶液中,利用聚醚胺400(D-400)将二者还原为氢氧化物并自组装负载在GO表面,制备出GO负载Co-Ni催化剂(GO/Ni-Co)。将GO/Ni-Co熔融共混到PP中,在氮气保护下裂解碳化共混得到石墨烯基碳纳米杂化材料。采用SEM、TEM、XRD和Raman等对其形貌结构进行表征。结果表明:利用该方法可成功制备一种三维石墨烯碳纳米杂化材料(RGO/C)。将所制备的RGO/C应用于超级电容器,在扫描速率为2m V/s时,最大比电容达到595F/g,并且具有良好的循环稳定性。 In the presence of graphene oxide(GO)-supporting Co-Ni catalysts, a kind of graphene-based carbon nano hybrid materials was syn-thesized by catalytic cracking of polypropylene, and the electrochemical application of this material as a super capacitor was investigated. Firstly, the cobalt acetate and nickel acetate with a certain proportion were dispersed into GO aqueous solution, and then the polyetheramine-400(D-400) was applied to reduce nickel acetate and cobalt acetate to hydroxides on the surface of GO layers, after that a kind of GO-supporting Co-Ni catalysts was prepared. The GO/Co-Ni catalyst was melt blended into polypropylene, and after the cracking carbonization, the graphene-based carbon nano hybrid materials were obtained(RGO/C). The SEM, TEM, XRD and Raman techniques were used to characterize the morphology and structure of RGO/C.The results demonstrated that a kind of RGO/C had been successfully synthesized via this method. At last, the RGO/C was used as the super capaci-tor. When the scan speed was 2 m V/s, the maximum specific capacitance of RGO/C was 595 F/g and it had good cycle stability.
出处 《化学与粘合》 CAS 2018年第1期16-21,共6页 Chemistry and Adhesion
关键词 石墨烯负载Co-Ni催化剂 聚丙烯 石墨烯碳纳米杂化材料 超级电容器 Graphene-supporting Co-Ni catalysts polypropylene graphene-based carbon nano hybrid materials super capacitors
  • 相关文献

参考文献2

二级参考文献83

  • 1YangXW, ZhuJW, QiuL, LiDan. Adv. Mater.,2011,23: 2833.
  • 2NiuZQ, ChenJ, HngH H, Ma J, Chen X D. Adv. Mater., 2012, 24:4144.
  • 3Li C, Shi G Q. Nanoscale, 2012, 4:5549.
  • 4Rajesh, Paul R K, Mulchandani A. J. Power Sources, 2013, 223:23.
  • 5Hu C G, Cheng H H, Zhao Y, Hu Y, Liu Y, Dai L M, Qu L T. Adv. Mater. , 2012, 24:5493.
  • 6Yu D S, Wei L, Jiang W C, Wang H, Sun B, Zhang Q, Goh K, SiR M, Chen Y. Nanoscale, 2013, 5:3457.
  • 7Ma Y W, Sun L Y, Huang W, Zhang L R, Zhao J, Fan Q L, Huang W. J. Phys. Chem. C, 2011, 115:24592.
  • 8Wu Z S, Yang S B, Sun Y, Parvez K, Feng X L, Mtillen K. J. Am. Chem. Soc. , 2012, 134:9082.
  • 9Huang C C, Bai H, Li Chun, Shi G Q. Chem. Commun. , 2011, 47:4962.
  • 10He Y Q, Zhang N N, Gong Q J, Li Z L, Gao J P, Qiu H X. Mater. Chem. Phys., 2012, 134:585.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部