期刊文献+

基于分布式动力的翼身融合飞机整流罩气动设计

Aerodynamic design of nacelle of blended-wing-body aircraft with distributed propulsion
下载PDF
导出
摘要 整流罩设计对基于分布式动力的翼身融合(BWB)飞机气动特性会产生显著影响。为了揭示在边界层吸入(BLI)效应下整流罩的设计参数对飞机气动特性的影响及其原因,采用计算流体力学(CFD)方法和Morris敏感度分析法对此布局飞机气动特性进行了详细研究,得到了整流罩主要设计参数对飞机气动特性影响的敏感度和耦合关系,并对典型设计参数下的流动特性进行分析。结果表明:对飞机气动特性影响较大的参数是整流罩特征截面2和3的最大厚度,这是因为其增大了当地截面的厚度和弯度,进而影响了整流罩表面的压力分布;在流量系数减小和进气边界弦向位置前移时,最大厚度增大会造成背风面发生局部分离;整流罩特征截面2和3的最大厚度对气动特性具有较强的耦合影响。 Nacelle design has a significant effect on aerodynamic performance of blended-wing-body (BWB) aircraft with distributed propulsion. To clarify the effect and its reason of primary nacelle design pa- rameters on aerodynamic performance of BWB aircraft with boundary layer ingestion (BLI) effect, a detailed study was conducted by computational fluid dynamics (CFD) method and Morris sensitivity analysis method. Sensitivity order and coupled effect of primary design parameters on aerodynamic performance were obtained. Flow details of higher sensitivity and greater coupled effect parameters were analyzed under baseline and alter- native condition. The results show that the relatively most significant parameters are the maximum thickness of section 2 and 3. The main reason is that local thickness and camber increase, and pressure distribution of whole nacelle surface is changed. Leeward local stall will occur as the maximum thickness increases configura- tion when mass flow rate decreases and inlet location along the chord direction moves forward. The coupled effect of the maximum thickness of section 2 and 3 on aerodynamic performance is relatively significant.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第1期71-81,共11页 Journal of Beijing University of Aeronautics and Astronautics
关键词 翼身融合(BWB)布局 边界层吸入(BLI) 计算流体力学(CFD) 敏感度 分析 整流罩 blended-wing-body (BWB) configuration boundary layer ingestion (BLI) computationalfluid dynamics (CFD) sensitivity analysis nacelle
  • 相关文献

参考文献2

二级参考文献16

  • 1Andy K, Leifur T, William H, et al.MDO of a blended wing body transport aircraft with distributed propulsion, AIAA-2003-6732[R].Reston:AIAA, 2003.
  • 2Larry W, Hardin O, Gregory T, et al.Aircraft system study of boundary layer ingesting propulsion, AIAA-2012-3993[R].Reston:AIAA, 2012.
  • 3Liebeck R H.Design of the blended wing body subsonic transport[J].Journal of Aircraft, 2004, 41(1):10-25.
  • 4Qin N, Vavalle A, Le Moigne A, et al.Aerodynamic considerations of blended wing body aircraft[J].Progress in Aerospace Sciences, 2004, 40(6):321-343.
  • 5Carter M B, Campbell R L, Pendergraft O C, et al.Designing and testing a blended wing body with boundary-layer ingestion nacelles[J].Journal of Aircraft, 2006, 43(5):1479-1489.
  • 6Hyoungjin K, Liu M S.Flow simulation of N3-X hybrid wing-body configuration, AIAA-2013-0221[R].Reston:AIAA, 2013.
  • 7Manti?-Lugo V, Doulgeris G, Singh R.Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(8):1215-1232.
  • 8Pritesh C, Sho S, David K, et al.Conceptual design of an N+3 hybrid wing body subsonic transport, AIAA-2010-4812[R].Reston:AIAA, 2010.
  • 9Hileman J I, Spakovszky Z S, Drela M, et al.Airframe design for "silent aircraft"[C]//45th AIAA Aerospace Sciences Meeting.Reston:AIAA, 2007:5403-5417.
  • 10Hileman J I, Spakovszky Z S, Drela M, et al.Airframe design for silent fuel-efficient aircraft[J].Journal of Aircraft, 2010, 47(3):956-969.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部