期刊文献+

液氮贮箱常压停放实验与数值仿真

Experiment and numerical simulation of liquid nitrogen tank atmospheric ground parking
下载PDF
导出
摘要 为研究低温推进剂的常压停放过程,设计了可视化液氮贮箱实验系统。实验中研究充填率和环境温度对液氮汽化量的影响,并测量贮箱内流体和贮箱外壁面的温度随时间和位置的变化。实验得出贮箱常压停放过程,相变主要在壁面和气液界面产生,并且气枕区存在温度分层,距出口位置越近温度越高;而液体区温度基本一致,处于饱和状态。贮箱外壁面在轴向的温度分布显著不同,处于液体区壁面温度低。运用分子动力学推导出的HertzKnudsen公式作为气液相变的传热传质源项,并据实验测得温度边界条件,采用混合物模型对贮箱常压停放状态进行30 min的数值仿真。仿真得到结果显示体积汽化速率与实验数据的偏差在5%以内,液体区的温度仿真与实验的偏差在0.15 K左右。 In order to study the progress of the cryogenic propellant during atmospheric ground parking, a visualization liquid nitrogen tank experiment system was designed. The experiment researched how the filling rate and ambient temperature affected the evaporation mass of liquid nitrogen, and measured the fluid inside tank and the wall temperature outside tank which changed with the time and location. The experimental results show that during atmospheric ground parking the phase transition mainly happens in the wall and gas-liquid in- terface, air pillow zone has temperature levels, and the air pillow temperature increases with the decrease of the distance from the exit. The liquid stays in the saturated state with almost consistent temperature, and the outer wall temperature distribution of the tank is significantly different in the axial direction and lower in liquid zone. The heat and mass transfer between liquid and gas is deduced from the Hertz-Knudsen equation based on the molecular dynamics theory. According to the temperature boundary conditions acquired from the experi- ment, physical process of 30 min in liquid nitrogen tank during atmospheric ground parking was simulated using mixture model. The simulation results show that the deviation of volume vaporization rate between simu- lation and experiment is within 5% , and the deviation of temperature simulation and experiment in the liquid zone is about 0.15 K.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第1期99-107,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 中国运载火箭技术研究院高校联合创新基金资助项目(CALT201302)~~
关键词 低温贮箱 常压停放 相变 传热传质 混合物模型 cryogenic tank atmospheric ground parking phase transition heat and mass transfer mix-ture model
  • 相关文献

参考文献4

二级参考文献31

  • 1代予东,赵红轩.运用数学方法模拟推进剂贮箱增压[J].火箭推进,2003,29(3):34-40. 被引量:6
  • 2[3]Hanzelka P, MusilováV. Influence of changes in atmospheric pressure on evaporation rates of low-loss helium cryostats. Cryogenics, 1994, (4)
  • 3[4]Van N T Dresar. Self-pressurization of a flightweight liquid hydrogen tank:effects of fill level at low wall heat flux. AIAA, 1992,0818
  • 4[2]Ring E.Rocket Propellant and Pressurization System.Prentice-Hall,Upper Saddle River,NJ,1964,pp173-245.
  • 5[3]Epstein M.,Anderson R E.An Equation for the Prediction of Cryogenic Pressurant Requirement for Axisymmetric Propellant Tanks.Advanced in Cryogenic Engineering,Vol.13,New York,1968,pp207-214.
  • 6[4]Majumdar A,Steadman T.Numerical Modeling of Pressurization of a Propellant Tank,AIAA Paper 990879,1999.
  • 7[5]Reid R C,Prausintz J M,Poling B.E.The Properties of Gases and Liquids,4th ed.,McGraw-Hall,New York.1987.
  • 8徐济望 贾斗南.沸腾传热和气液两相流[M].北京:原子能出版社,2001.183-205.
  • 9Zilliac G,Arif Karabeyoglu M. Modeling of propellant tank pres- surization[ R]. AIAA-2005-3549, 2005.
  • 10Majumdar A, Steadman T. Numerical modeling of pressurization of a propellant tank [ R ]. AIAA-99-0879,1999.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部