摘要
本文利用Krasnoselskii不动点定理考虑了一类非齐次迭代泛函微分方程x'(t)=c_1x(t)+c_2x^([2])(t)+F(t)周期解的存在唯一性问题,推广了迭代泛函微分方程周期解的相关理论.
Abstract: In this paper, we use Krasnoselskii's fixed point theorem to study the existence and uniqueness of periodic solutions of a nonhomogeneous iterative functional differential equation x'(t)=c_1x(t)+c_2x^([2])(t)+F(t), which develops the theory about the periodic solutions of iterative functional differential equation.
出处
《数学杂志》
2018年第2期191-199,共9页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(11326120
11501069)
Foundation of Chongqing Municipal Education Commission(KJ1400528
KJ1600320)
关键词
迭代泛函微分方程
周期解
不动点定理
iterative functional differential equation
periodic solutions
fixed point theorem