摘要
本文研究了一类0<α<1带有无限时滞的中立型脉冲微分方程mild解的存在性的问题.利用解算子的相关性质及M(o|¨)nch不动点理论的方法,获得了这类方程的mild解并予以证明,且得到了解的存在性的结果.
In this paper, we investigate the existence of mild solution for impulsive fractional neutral function integro-differential evolution equations with infinite delay of order 0 〈α 〈 1 in a Banach space. The main mathematical techniques used here include the fractional calculus, properties of solution operators, and MSnch's fixed point theorem via measures of noncompactness. Without assuming that the solution operators to such equations. are compact, we prove the existence of mild solution
出处
《数学杂志》
2018年第2期217-232,共16页
Journal of Mathematics
基金
Supported by Hunan Provincial Natural Science Foundation of China(14JJ2050)
关键词
中立型脉冲微分方程
MILD解
不动点定理
非紧性测度
impulsive fractional neutral function integro-differential evolution equations
mild solution
fixed point theorem
Hausdorff measure of noncompactness