期刊文献+

Lorentz空间R_1^(n+1)中类空λ-超曲面的刚性定理(英文)

RIGIDITY THEOREMS OF THE SPACE-LIKEλ-HYPERSURFACES IN THE LORENTZIAN SPACE R_1^(n+1)
下载PDF
导出
摘要 本文研究了Lorentz空间R_1^(n+1)中完备的类空λ-超曲面的刚性问题.利用推广了的L-算子的性质和一些积分不等式,最终得到了关于这类超曲面的若干刚性定理,其中包括R_1^(n+1)中加权的完备类空自收缩子的刚性,推广了此前欧氏空间完备λ-超曲面的相关结果. In this paper, we study complete space-like λ-hypersurfaces in the Lorentzian space R1 n+1. By using the property of generalized ^-operator and some integral inequalities, we obtain some rigidity theorems for these hypersurfaces including the complete space-like self-shrinkers with weight in R1n+1 , which generalize some related results in the Euclidean space.
出处 《数学杂志》 2018年第2期253-268,共16页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11671121 11171091 11371018)
关键词 LORENTZ空间 刚性定理 类空λ-超曲面 自收缩子 Lorentzian space rigidity theorems space-like λ-hypersurfaces Self-shrinkers
  • 相关文献

参考文献2

二级参考文献24

  • 1李光汉,吴传喜.球面中具有常平均曲率超曲面的谱特征(英文)[J].数学进展,2004,33(5):575-580. 被引量:1
  • 2Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Proc. Syrup. Global Analysis U C. Berkeley, 1968.
  • 3Chau, A., Chen, J., Yuan, Y.: Rigidity of Entire self-shrinking solutions to curvature flows. J. Reine Angew. Math., 664, 229-239 (2012).
  • 4Chen, Q., Qiu, H. B.: Rigidity theorems for self-shrinker in Euclidean space and Pseudo-Eclideanspace, preprint Cheng, S. Y., Yau, S. T.: Maximal spacelike hypersurfaces in the LorentMinkowski spaces. Ann. Math., 104, 407 419 (1976).
  • 5Cheng, X., Zhou, D. T.: Volume estimates about shrinkers, arXiv:l106.4950.
  • 6Colding, T. H., Minicozzi II, W. P.: Generic mean curvature flow I; generic singularities. Ann. Math., 175, 755433 (2012).
  • 7Ding, Q., Wang, Z. Z.: On the self-shrinking system in arbitrary codimensional spaces, arXiv:1012.0429v2 (math.DG].
  • 8Ding, Q., Xin, Y. L., Volume growth, eigenvalue and compactness for self-shrinkers. Asian J. Math., 17, 443-456 (2013).
  • 9Ding, Q., Xin, Y. L.: The rigidity theorems for Lagrangian self-shrinkers. J. Reine Angew. Math., accepted, arXiv:l l12.2453 [math.DG1.
  • 10Ding, Q., Xin, Y. L.: The rigidity theorems for Lagrangian self-shrinkers. J. Reine Angew. Math., accepted, arXiv:l 112.2453 [math.DG].

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部