摘要
本文研究了Lorentz空间R_1^(n+1)中完备的类空λ-超曲面的刚性问题.利用推广了的L-算子的性质和一些积分不等式,最终得到了关于这类超曲面的若干刚性定理,其中包括R_1^(n+1)中加权的完备类空自收缩子的刚性,推广了此前欧氏空间完备λ-超曲面的相关结果.
In this paper, we study complete space-like λ-hypersurfaces in the Lorentzian space R1 n+1. By using the property of generalized ^-operator and some integral inequalities, we obtain some rigidity theorems for these hypersurfaces including the complete space-like self-shrinkers with weight in R1n+1 , which generalize some related results in the Euclidean space.
出处
《数学杂志》
2018年第2期253-268,共16页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(11671121
11171091
11371018)