期刊文献+

矩形b-度量空间中压缩映象的公共耦合不动点定理

A COMMON COUPLE FIXED POINT THEOREM OF CONTRACTIVE MAPPINGS IN RECTANGULAR B-METRIC SPACE
下载PDF
导出
摘要 本文研究了矩形b-度量空间中压缩映象不动点的存在性和唯一性问题.利用映象T具有混合g-单调性的条件,获得了此类映象的一个新的耦合重合点和耦合公共不动点定理.这些结果是度量空间中某些经典结果在矩形b-度量空间中的进一步推广和发展. In this paper, we investigate the existence and the uniqueness of fixed points for contractive mappings in rectangular b-metric space. By Using the mixed g-monotone property of this paper of mapping T, some new couple coincidence point and common couple fixed point theorems are gotten, which largely improve and extend some classical results in metric spaces.
作者 刘丽亚 谷峰
出处 《数学杂志》 2018年第2期302-316,共15页 Journal of Mathematics
基金 国家自然科学基金资助(11071169) 浙江省自然科学基金资助(Y6110287)
关键词 矩形b-度量空间 压缩映象 重合耦合点 耦合公共不动点 混合g-单调性 rectangular b-metric space contractive mappings couple coincidence point couple common fixed point mixed g-monotone property
  • 相关文献

参考文献1

二级参考文献9

  • 1Rockafellar R. T.. Monotone operators and the proximal point algorithm [J]. SIAM J. Control Optim. 1976, 14(6):877-898.
  • 2Mann W. R.. Mean value methods in iteration [J]. Proc. Amer. Math. Soc. 1953, 4:506-510.
  • 3Kamimura S. , Khan S. H. , Takahashi W.. Iterative schemes for approximating solutions of relations involving accretive operations in Banach spaces [J].Fixed Point Theory and Application, 2003,5:41- 52.
  • 4Takahashi W. Nonlinear Functional Analysis[M]. Yokohama Publishers, Yokohama, 2000.
  • 5Agarwal R. P. , Meehan M. , O' Regan D.. Fixed point theory and applications [M]. Cambridge University Press, 2001.
  • 6Browder F. E.. Semi-contractive and semi-accretive nonlinear mappings in Banach spaees[J]. Bull. Amer. Math. Soc. , 1968, 74: 660-666.
  • 7Reich S.. Weak convergence theorems for non-expansive mappings in Banach spaces [J].J. Math. Anal. Appl. 1979,67:274-276.
  • 8Opial Z.. Weak convergence of the sequence of successive approximations for non-expansive mappings[J]. Bull. Amer. Math. Soc. 1967, 73: 591-597.
  • 9Kamimura S., Takahashi W.. Weak and strong convergence of solutions to accretive operator inclusions and applications [J]. Set-Valued Anal. 2000, 8: 361-374.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部