期刊文献+

直接式槽式太阳能中高温蒸汽发生系统及其经济性分析 被引量:1

Economic Analysis of a Direct Solar Trough Medium &High Temperature Steam Generation System
下载PDF
导出
摘要 设计了一种直接式槽式太阳能中高温蒸汽发生系统,并建立数学模型,提出了系统节煤量和蒸汽能源平均成本的概念,分析了系统热效率和蒸汽能源平均成本的影响因素。结果表明:当太阳辐射由100W/m^2增大至1 000W/m^2时,系统热效率从47.2%提高至66.3%,系统工质质量流量从0.07kg/s增大至1.05kg/s;当环境温度由15℃升高至33℃时,系统热效率从64.5%缓慢提高至64.7%,系统工质质量流量基本保持不变;当年辐射时间为3 200h时,直接式槽式太阳能中高温蒸汽发生系统的投资成本可降低至631.30$/kW,蒸汽能源平均成本最低可降至26.82$/t,使其具有更强的市场竞争力。 A direct solar trough medium & high temperature steam generation system was designed, for which, a numerical model was established, following concepts were proposed, such as the levelized cost of steam energy and the amount of saved coal, etc. , while the factors influencing the system thermal efficiency and the steam energy levelized cost were analyzed. Results show that when the solar radiation rises from 100 W/m^2 to 1 000 W/m^2 , the thermal efficiency of system would increase from 47.2% to 66.3%, and the working fluid flow would increase from 0.07 kg/s to 1.05 kg/s. When the ambient temperature rises from 15 ℃ to 33 ℃, the thermal efficiency would increase slowly from 64.5% to 64.7%, while the fluid flow may remain basically unchanged. For an annual radiation time of 3 200 h, the investment cost of above direct solar trough medium & high temperature steam generation system may be as low as 631.30 $/kW, and the levelized cost of steam energy can be reduced to 26.82 $/t, making the system have a strong market competitiveness.
出处 《动力工程学报》 CAS CSCD 北大核心 2018年第3期246-252,共7页 Journal of Chinese Society of Power Engineering
关键词 太阳能 中高温蒸汽 热效率 投资成本 蒸汽能源平均成本 solar energy medium & high temperature steam thermal efficiency investment cost levelized cost of steam energy
  • 相关文献

参考文献6

二级参考文献39

  • 1刘毓伟,陈滨.抛物槽太阳能集热器蒸汽发电系统[J].电力需求侧管理,2004,6(6):38-40. 被引量:5
  • 2白慧峰,徐越,陈德龙.基于Aspen Plus平台的超超临界机组热力系统性能预测模型开发[J].热力发电,2006,35(4):14-16. 被引量:5
  • 3赵钦新,王善武.我国工业锅炉未来发展分析[J].工业锅炉,2007(1):1-9. 被引量:81
  • 4Reuel Shinnar, Francesco Citro, Solar Thermal Energy: The Forgotten Energy Source [ J ]. Technology in Society, Vol29, 2007: 261 - 270.
  • 5Begrambekov. L.B., Zakharov.A.M., Pustobaev.A.A., Tubular High- temperature Vacuum Solar- radiation Collectors, Applied Solar Energy[J]. Vol26, n 1,1990:68 -69.
  • 6Harish C. Barshilia, N. Selvakumar, K.S. Rajam, D.V. Sridhara Rao, K. Muraleedharan, Deposition and characterization of TiAIN/TiAION/Si3N4 tandem absorber sprepared using reactive direct current magnetron sputtering[J] .Thin Solid Films, Vol516, 2008 : 6071 - 6078
  • 7Bofeng Lee, The Progress and Prospect of Middle/High Temperature Evacuated Tubular Solar Collector[J]. Renewable Energy. Vol 24 , 2001:539 - 544.
  • 8Grass. C., Comparison of The Optics of Nontracking and Novel Types of Tracking Solar Thermal Collectors for Process Heat Applications up to 300℃[J]. Solar Energy, Vol76, n 1 - 3, 2004: 207 - 215.
  • 9IEA TASK 33/IV solar heat for indusrial applications[J]. RENEWABL EENERGY WORLD, 2006:68- 74
  • 10Wemer Weiss, Matthias Rommel, Process Heat Collectors, AEE INTEC,2008.

共引文献23

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部