期刊文献+

负极材料LTO/G和LTO/Ag-G的合成及其电化学性能 被引量:4

Synthesis and electrochemical properties of LTO/G and LTO/Ag-G anode materials
下载PDF
导出
摘要 采用溶剂热法制备锂离子电池负极材料Li_4Ti_5O_(12)/graphene(LTO/G)、Li_4Ti_5O_(12)/Ag-graphene(LTO/Ag-G)。通过X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和电池测试系统对合成的样品进行结构、形貌及电化学性能表征。结果表明:Ag纳米粒子(20~50 nm)均匀分布在石墨烯表面,在石墨烯和银微粒的协同作用下,LTO/Ag-G复合材料具有优良的电化学性能。该材料在0.2C和1C倍率下首次放电比容量为205.3 mA·h/g和179.3 mA·h/g;在1C倍率下,循环40次后放电比容量仍为149.6 mA·h/g。因此,LTO/Ag-G复合材料具有较好的倍率性能和循环性能,是一种理想的锂离子动力电池负极材料。 The lithium ion batteries anode materials Li_4Ti_5O_(12)/graphene(LTO/G),Li_4Ti_5O_(12)/Ag-graphene(LTO/Ag-G)were fabricated by solvothermal method.X-ray diffractometry(XRD),field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM)and battery testing system were employed to characterize the structure,morphology and electrochemical properties of the as-prepared materials.The results show that Ag nanoparticles(20-50 nm)disperse well on the surface of graphene,the LTO/Ag-G composites deliver the outstanding electrochemical performance,which is attributed to the synergetic effect of the Ag particles and graphene.The electrochemical tests present that the initial specific discharge capacities of LTO/Ag-G composites are 205.3 mA·h/g and179.3 mA·h/g at 0.2C and 1C,respectively,and maintain at 149.6 mA·h/g after 40 cycles at 1C,which indicates that the LTO/Ag-G composite is a promising anode material for lithium ion batteries with higher rate capability and cycling stability.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2018年第2期319-326,共8页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(21373074) 国家级大学生创新创业训练计划资助项目(20161035907)~~
关键词 石墨烯 钛酸锂 锂离子电池 负极材料 graphene lithium titanate lithium ion batteries anode material
  • 相关文献

参考文献5

二级参考文献60

  • 1阮艳莉,唐致远,彭庆文.尖晶石型Li_4Ti_5O_(12)电极材料的合成与电化学性能研究[J].无机材料学报,2006,21(4):873-879. 被引量:14
  • 2姚经文,吴锋.锂离子电池负极材料Li_4Ti_5O_(12)的合成及电化学性能[J].功能材料,2006,37(11):1752-1754. 被引量:4
  • 3WU Y P, RAHM E, HOLZE R. Carbon anode materials for lithium ion batteries[J]. J Power Sources, 2003, 114(2): 228-236.
  • 4NAKAJIMA T. Surface modification of carbon anodes for secondary lithium battery by fluorination[J]. J Fluorine Chem, 2007, 128: 277-284.
  • 5FU L J, LIU H, LI C, WU Y P, RAHM E, HOLZE T, WU H Q, Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sci, 2006, 8: 113-128.
  • 6LU Mi, TIAN Yaa-yan, YANG Yong. A comparison of electrochemical performance of natural graphite sulfurized by ball-milling and heat-treating as an anode for lithium ion batteries[J]. Eleetrochimica Aeta, 2009, 54(27): 6792-6796.
  • 7JOONGPYO S, KATHRYN A. Striebel electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries[J]. J Power Sources, 2007, 164(2): 862-867.
  • 8NOZAKI H, NAGAOKA K, HOSHI K, OHTA N, INAGAKI M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors[J]. J Power Sources, 2009, 194(1): 486-493.
  • 9ZOU Lin, KANG Fei-yu, ZHENG Yong-ping, SHEN Wan-ci. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochimica Acta, 2009, 54: 3930-3934.
  • 10WINTER M, NOVAK P, MONNIER A. Graphites for lithium-ion cells: The correlation of the first-cycle charge loss with the brunauer-emmett-teller surface area[J]. J Electrochem Soc, 1998, 145(2): 428-436.

共引文献60

同被引文献33

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部