摘要
利用一个新的锥不动点定理,研究含有各阶导数四阶两点边值问题{x(4)(t)+Ax″(t)=λf(t,x(t),x′(t),x″(t),x′″(t)),0〈t〈1 x(0)=x(1)=x″(0)=x″(1)=0 正解的存在性.其中f是一个非负连续函数,λ〉0,0〈A〈π2。
In this paper, by the use of a new fixed point theorem. The existence of at least one positive solutions for the fourth-order two point boundary value problem with all order derivatives {x(4)(t)+Ax″(t)=λf(t,x(t),x′(t),x″(t),x′″(t)),0〈t〈1 x(0)=x(1)=x″(0)=x″(1)=0 is considered, wherefis a nonnegative continuous function and λ〉0,0〈A〈π2
出处
《数学的实践与认识》
北大核心
2018年第5期220-227,共8页
Mathematics in Practice and Theory
关键词
边值问题
不动点定理
正解
GREEN函数
boundary value problem
fixed point theorem
positive solution
greentfunction