摘要
Nonderotary矩阵是一类重要的矩阵,将从相似标准形、中心化子、相似类维数等角度刻划这类矩阵的性质,证明矩阵A是Nonderotary当且仅当与A可交换的所有矩阵都可以写成A的多项式,当且仅当A的相似类的维数最大.
Nonderotary matrices are a class of important matrices. In this note, we charac- terize Nonderotary matrices in the aspect of canonical forms under similarity, centralizers and dimensions of similarity classes, and show that A is Nonderotary if and only if all matrices commutating with A can be written as some polynomial of A, and if and only if the dimension of the similarity class of A takes the maximal value.
出处
《数学的实践与认识》
北大核心
2018年第5期241-247,共7页
Mathematics in Practice and Theory
基金
湖北大学教研项目