期刊文献+

支持向量机在高功率器件制造中的应用

Application of Support Vector Machines in High Power Device Technology
下载PDF
导出
摘要 支持向量机(SVM)作为一种机器学习算法,具有良好的非线性处理能力、理论全局最优及克服维数灾难等优点。文章采用高斯核函数(RBF)支持向量机回归模型(SVR),归一化和降维进行数据处理,交叉验证进行参数寻优,获得最佳预测模型,并对该预测模型进行测试。应用该预测模型分析工艺参数对高功率器件合格率的影响,结果表明其对合格率的预测精度较高,对功率器件质量的提升具有重要的指导意义。 As a machine learning algorithm, support vector machine(SVM) has the advantages of good nonlinear processing ability, theoretical global optimum and overcoming the curse of dimensionality. It presented a support vector machines regression model (SVR) with Gauss kernel function (RBF). The best prediction model was obtained by normalization and dimensionality reduction for data and cross-validation for parameter optimization. The prediction model was tested and used to analyze the influence of process parameters on the qualified rate. Simulation results show that the SVR has high accuracy the quality of high power devices. in the prediction of qualified rate and great significance to improve
出处 《控制与信息技术》 2018年第1期62-64,86,共4页 CONTROL AND INFORMATION TECHNOLOGY
关键词 高功率器件 支持向量机 机器学习 数据降维 参数寻优 合格率 high power device support vector machine (SVM) machine learning data dimensionality reduction parameter optimization qualified rate
  • 相关文献

参考文献7

二级参考文献94

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部