期刊文献+

基于LCM模型的晋江市土地利用变化与预测分析 被引量:2

Dynamic Change and Prediction of Land Use in Jinjiang City Based on LCM Model
下载PDF
导出
摘要 为了探究晋江市土地利用演变规律与未来土地利用状况,以1990,2000,2010年3期遥感影像解译数据为数据源,分析土地利用类型动态变化程度;结合土地利用动态变化影响因子构建土地利用预测模型(LCM),对晋江市2020,2030年的土地利用数量以及分布进行预测。结果表明:1)LCM模型2010年模拟结果各项Kappa指数均大于80%;2)预测结果显示建设用地将会在晋江中北部增加,耕地的减少则分布在晋江未来区划的中心城区,裸地在LCM模型预测中出现减少,主要集中在沿海区域,园地在LCM模型中呈减少趋势,而林地虽然在2020年有所减少,但2020年以后则呈增长趋势,且集中在沿海乡镇。LCM模型对预测结果精确度以及可信度较高,预测结果能为晋江市未来土地利用的合理规划、区域经济发展方向提供合理依据。 The aim of the study was to explore the evolution law of land use and the future land use status in Jinjiang City. This paper analyzed the dynamic change of land use type with three remote sensing images in 1990,2000 and 2010. Based on the remote sensing interpretation data and the land use dynamic change influencing factors,this paper constructed the land use forecasting model( LCM). This model was used to forecast the quantity and distribution of land use in 2020 and 2030 in Jinjiang. The results are as follows:( 1) The Kappa indices of LCM model in 2010 were all more than 80%.( 2) The prediction results show that construction land will increase in the central and north parts of Jinjiang,and the decrease of cultivated land will be distributed in the central urban area of Jinjiang future zoning. The bare land will decrease in the LCM model prediction,mainly in the coastal area. While the forest land will decrease in2020,but the growth trend will appear after 2020,and mainly in the coastal towns. This paper indicated that the accuracy and credibility of LCM prediction were high and provided a reasonable basis for the future planning of land use in Jinjiang City and the direction of regional economic development.
出处 《林业资源管理》 北大核心 2018年第1期96-102,共7页 Forest Resources Management
基金 "生态林种科研基地建设"工程项目(61201400814) "森林持续经营研究"(ky0180081)
关键词 土地利用动态度 MLP_ANN模型 Marcov模型 预测 晋江 land use dynamics MLP_ANN model Marcov model prediction Jinjiang
  • 相关文献

参考文献7

二级参考文献107

共引文献155

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部