期刊文献+

基于深度神经网络的图像语句转换方法发展综述 被引量:1

Survey on Converting Image to Sentence Based on Depth Neural Networks
下载PDF
导出
摘要 在当前大数据时代,图像由于具有丰富的语义而成为大众获取相关信息的重要来源。基于深度模型的图像语义分析是一种通过深度模型将图像内容转换成可直观理解的语义知识的技术,受到了国内外研究者的广泛关注。该技术根据生成目标语义层次的差异,可分为单类别、多标签和语句3类。首先介绍了以上3类方法对应的深度模型的结构特点,并从技术的演化趋势角度对比分析了3类方法的技术特点和发展现状;然后重点对图像语句转换方法的发展现状、应用场景与性能要求的差异进行了论述,同时对图像语句转换方法的步骤进行分解和论述,从学术界和产业界两方面进行了详细的对比分析,指出了二者的不同研究侧重点与对应的发展现状;最后对具有深度模型的图像语句转换方法进行了总结和展望,指明了该方法当前存在的问题与发展趋势。 In the context of big data,the number of images increases rapidly,and knowledge acquisition is of great significance to the use and analysis of images.Image semantic analysis method based on deep model is a technique which can convert image content into intuitive understandable semantic knowledge through deep model,attracting wide attention at home and abroad.The target of image semantic analysis method can be divided into phrases,multiple tags,and statements.This paper introduced the research status of the above methods and their advantages,and analyzed the features of the image during the process of knowledge acquisition and the existing problems,including the structural features of convolutional neural network and the recurrent neural network.From the aspects such as model structure and connection,this paper analyzed the research hotspot and the cases,then analyzed the differences between academia and industry,and adopted image sentence conversion to excute a discriminant comparison.Finally,this paper drew a conclusion and gave its hope for the images semantic analysis method with deep model.
出处 《计算机科学》 CSCD 北大核心 2018年第3期23-28,共6页 Computer Science
基金 教育部人文科学社会基金项目(17YJCZH127) 北京工商大学两科基金项目(LKJJ2017-13)资助
关键词 深度模型 图像语义分析 卷积神经网络 递归神经网络 支持向量机 Deep model Image semantic analysis Convolutional neural network Recurrent neural network Support vector machine
  • 相关文献

参考文献1

二级参考文献67

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178.
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531.

共引文献194

同被引文献25

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部