期刊文献+

左交换代数的“自由定理”

The “Freedom Theorem” for Left-Commutative Algebras
下载PDF
导出
摘要 设X是一个有限集,LC(X)表示由X生成的自由左交换代数;f∈LC(X),Id(f)表示LC(X)的由f所生成的理想.对于任意的h,是否存在一个算法可以判断出h∈Id(f)或h■Id(f)?为了研究这个问题,文中应用Grbner-Shirshov基理论的思想方法在自由左交换代数的线性基底上定义了一个良序,证明了这个良序保持运算,重写了由一个多项式所生成的自由左交换代数的理想的元素的表达式,从而证明了一个定义关系的左交换代数具有可解的字问题并得到了左交换代数的"自由定理". Let X be a finite set and LC( X) be the free left-commutative algebra generated by X. Let Id( f) be the ideal of LC( X) generated by f where f ∈LC( X). For each h,the problem is whether there is an algorithm to decide h ∈Id( f) or h■Id( f). This problem is studied by using the approach of Grbner-Shirshov bases theory. A well ordering on a linear basis of free left commutative algebra is defined. It is proved that the ordering is compatible with the product. The word problem for left-commutative algebras with a single defining relation is solved and the"freedom theorem"for left-commutative algebras is obtained by rewiting the elements of the ideal of free left-commutative algebra generated by one polynomial.
作者 莫秋慧 李羽
机构地区 惠州学院数学系
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2018年第1期110-113,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11401246 11426112 11501237) 广东省自然科学基金博士启动项目(2014A030310087 2014A030310119 2016A030310099) 广东省高等学校优秀青年教师培养计划项目(YQ2015155) 惠州学院博士科研基金项目(C513.0210 C513.0209 2015JB021)
关键词 左交换代数 自由定理 字问题 left-commutative algebra freedom theorem word problem
  • 相关文献

参考文献1

二级参考文献61

  • 1BOKUT L. A..Anti-commutative Grbner-Shirshov basis of a free Lie algebra[J].Science China Mathematics,2009,52(2):244-253. 被引量:1
  • 2Shirshov A I. Some algorithmic problem for ε-algebras [J]. Sibirskii Matematichskii Zhurnal, 1962,3:132 - 137.
  • 3Bokut L A,Latyshev V, Shestakov I,et al. Selected works of A. I. Shirshov[ M ]. Trs: Bremner M, Kotchetov M V. Basel,Boston, Berlin : Birkhauser ,2009.
  • 4Shirshov A I. Some algorithmic problem for Lie algebras [ J]. Sibirskii Matematichskii Zhurnal, 1962,3 ( 2 ) : 292 - 296.
  • 5Bergman G M. The diamond lemma for ring theory [ J ]. Advances in Mathematics, 1978,29 : 178 - 218.
  • 6Bokut L A. Imbeddings into simple associative algebras [ J]. Algebra Logika, 1976,15 : 117 - 142.
  • 7Bokut L A, Chen Y Q. Grobner-Shirshov bases for Lie algebras: After A.I. Shirshov[ J]. Southeast Asian Bul- letin of Mathematics ,2007,31:1057 - 1076.
  • 8Hironaka H. Resolution of singularities of an algebraic va- riety over a field if characteristic zero: Ⅰ , Ⅱ [ J ]. Math- ematische Annalen, 1964,79 : 109 - 203 ;205 - 326.
  • 9Buchberger B. An algorithmical criteria for the solvability of algebraic systems of equations [ J]. Aequationes Math- ematicae, 1970,4:374 - 383.
  • 10Bokut L A, Chen Y Q. Grobner-Shirshov bases: Some new results [ C ]//Shum K P, Zelmanov E, Zhang J P, et al. Advance in Algebra and Combinatorics. Singapore: World Scientific, 2008:35 - 56.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部