期刊文献+

一类波动方程整体解的存在性与不存在性 被引量:2

Existence and non-existence of global solutions for the wave equations
下载PDF
导出
摘要 研究了一类具有异号项的高阶波动方程初边值问题.首先介绍了这类方程的最新研究进展,并引入了几个重要的广义泛函和集合,然后讨论了这些泛函的性质,并证明了这些集合在该波动方程下是不变的.最后利用Galerkin逼近法和位势井法相结合证明了方程整体弱解的存在性,并利用位势井-凸性方法分析了方程整体弱解不存在的前提条件.同时给出了方程整体弱解存在与不存在的最佳门槛结果. In this paper we investigated the initial boundary value problem for a classof higher order wave equations with two opposite source terms. Firstly, we introduced the latest research progress of the wave equations and defined some important generalized functionals and sets, then the properties of the functionals were discussed. Secondly, it was proved that these sets were invariant under the wave equation. Finally, we proved the existence of global weak solutions by the combination of Galerkin approximation method and potential well method, and obtained the conditions of the non-existence of global weak solutions by using the potential well method and the convexity. The optimal threshold results were given for the existence and non-existence of global weak solutions.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期1-10,共10页 Journal of East China Normal University(Natural Science)
基金 安徽省自然科学研究项目(1508085MA10) 安徽省高校自然科学研究重点项目(KJ2016A770) 宿州学院重点科研项目(2016yzd06) 宿州学院优秀青年人才支持计划重点项目(2016XQNRL003)
关键词 波动方程 k阶拉普拉斯算子 存在性 不存在性 位势井 wave equation k-Laplace operator existence non-existence po-tential well
  • 相关文献

参考文献7

二级参考文献51

  • 1刘亚成,刘萍.关于位势井及其对强阻尼非线性波动方程的应用[J].应用数学学报,2004,27(4):710-722. 被引量:18
  • 2刘亚成,王锋,刘大成.任意维数的强阻尼非线性波动方程(Ⅰ)——初边值问题[J].应用数学,1995,8(3):262-266. 被引量:14
  • 3刘亚成,李晓媛.具有两个异号非线性源项的波动方程的整体强解[J].黑龙江大学自然科学学报,2006,23(1):31-34. 被引量:2
  • 4庄蔚 杨桂通.孤波在非线性弹性杆中的传播[J].应用数学与力学,1986,7(7):571-582.
  • 5张善元 庄蔚.非线性弹性杆中的应变孤波[J].力学学报,1988,20(1):58-66.
  • 6朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253.
  • 7Levine H A. Instability and nonexistence of global solutions of nonlinear wave equations of the form Pu, =- Au + F(u) [J]. Trans. Amer. Nath. Soc., 1974,192 : 1-12.
  • 8Georgiev V,Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms[J]. J. Diff. Eq. , 1994,109 :295 - 308.
  • 9Todorova G. Cauehy problems for a nonlinear wave equations with nonlinear damping term[J]. Nonlinear Anal. , 2000,41 : 891-905.
  • 10Ikehata R. Some remarks on the wave equations with nonlinear damping and source terms[J]. Nonlinear Anal. , 1996,27 : 1165-1175.

共引文献76

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部