期刊文献+

GaAs原子链耦合石墨烯电子输运性质的理论计算 被引量:1

The theoretical calculation on electron transport properties of GaAs atomic chain coupling graphene ribbon
下载PDF
导出
摘要 基于密度泛函理论,运用非平衡格林函数对(GaAs)_4原子链耦合石墨烯纳米条带的电子输运性质进行了第一性原理计算,结果发现通过改变原子链与石墨烯之间的距离可以有效调制系统的电子传输行为.当(GaAs)_4原子链与石墨烯之间的距离d在0.10~0.28nm的范围内变化时,石墨烯、原子链上各自的电子传输要相互影响,且系统的平衡电导在2G_0~7G_0之间发生G_0(G_0=2e^2/h)整数倍的变化,即表现出量子化电导现象;当d>0.28nm时,总的电导等于各自的电导之和,此时(GaAs)_4原子链与石墨烯之间的耦合很弱,各自的电子输运相互影响很小. The electron transport properties of(GaAs)_4 atomic chain coupling graphene ribbon was calculated using density functional theory and non-equilibrium green's function from the first principles.The results showed that changing the distance of atomic chain with the graphene can modulate electron transport properties of system.As the distance changed in the range of 0.10-0.28 nm,electrons transported in graphene and atomic chain have an influence on each other.The equilibrium conductance of(GaAs)_4 atomic chain coupled with graphene ribbon changed from 2 G_0 to 7 G_0.The results showed that there was phenomenon of quantized conductance.When d>0.28 nm,the coupling effect of atomic chain and the graphene is weak,electrons transported in graphene and atomic chain have a small influence on each other.The total conductance of system is equal to the sum of their respective conductance at this time.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期40-45,共6页 Journal of Henan Normal University(Natural Science Edition)
基金 四川省高等学校重点实验室开放课题基金(JSWL2015KF02) 宜宾市重点科技项目(2015SF02) 宜宾学院重点科研项目(2015QD14)
关键词 GaAs原子链 石墨烯 电子输运 非平衡格林函数 GaAs atomic chain graphene electron transport non-equilibrium Green function
  • 相关文献

参考文献3

二级参考文献85

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 2Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469.
  • 3Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418.
  • 4Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805.
  • 5Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li Guo, Gao H J 2009 Chin. Phys. B 18 3008.
  • 6Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese).
  • 7Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese).
  • 8Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803.
  • 9Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107.
  • 10OuYang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese).

共引文献2

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部