期刊文献+

基于集成学习的微博用户转发行为预测 被引量:2

Predicting microblog user retweet behaviors based on ensemble learning
下载PDF
导出
摘要 为了提高微博用户转发行为预测的精度,提出一种有效的基于集成学习的微博用户转发行为预测算法.首先,对影响用户转发的各种特征进行综合分析,提取出用户属性、社交关系、微博内容等影响用户转发行为的特征;然后,采用Logistic回归、支持向量机与BP(BackPropagation)神经网络等机器学习算法对用户转发行为进行预测;最后,利用"加权投票法"的集成学习方法对多个预测结果进行融合.实验结果表明,相对于BP神经网络算法,在综合评价性能的F1度量值上,集成学习算法有1.5%的性能提升. In order to improve the accuracy of predicting userretweet behaviors in a micorblog social network,the paper proposes an effective method based on Ensemble Learning.Firstly,the papercomprehensively analyzes the performances of various features that affect user retweetbehaviors,such asuser attributes,social relationships and microblog contents,et al.Based on the extracted features,the propsed method respectively predictsuser retweetbehaviors with Logistic regression,SVM(Support Vector Machine)and BP(Back Propagation)neural network,and incorporates the corresponding results in a weighted voting manner based on Ensemble Learning.The experimental results show that the propsed method has a performance improvement of 1.5% on F1 metric of the overall evaluation,compared with the BP neural network.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期111-116,共6页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(U1504602) 河南省科技攻关项目(172102210089 162102210396) 河南省自然科学基金研究项目(152300410129) 河南省高等学校重点科研项目(15A520125 17A520019 15A520114)
关键词 新浪微博 转发行为预测 集成学习 社交关系 sinamicroblog retweetbehavior prediction ensemble learning socialrelation
  • 相关文献

参考文献4

二级参考文献48

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:73
  • 2R. Lahan. The Economics of Attention[M]. Univer- sity of Chicago Press, 2006.
  • 3Pete Cashmore. YouTube: Why Do We Watch? [DB/ OL]. http://editin, cnn. com/2009/TECH/12/17/ cashmore, youtube/ index, html, 2010.
  • 4J. Berger, K. L. Milkman. Social Transmission, E- motion, and the Virality of Online Content[R]. Whar- ton Research Paper, 2010.
  • 5A. Tumaslan, T. O. Sprenger, P. G. Sanduer, et al. Predicting Elections with Twitter: What 140 Charac- ters Reveal about Political Sentiment[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. ICWSM,10, 2010.
  • 6J. Bollen, H. Mao, A. Pepe. Determining the public mood state by analysis of mieroblogging posts[C]// Proceedings of the Alife XII Conference MIT Press, 2010.
  • 7T. Sakaki, M. Okazaki, Y. Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors[C]//Proceedings of WWW,10, 2010.
  • 8Y. Qu, C. Huang, P. Zhang, et al. Microblogging after a Major Disaster in China: A Case Study of the Yushu Earthquake [C]//Proeeedings of CSCW2011, 2011.
  • 9H. Kwak, C. Lee,H. Park, et al. What is Twitter, a ,Social Network or a News Media[C]//Proceedings of WWW'IO, 2010.
  • 10D. Boyd, S. Golder, G. Lotan. Tweet, tweet, retweet: Conversational aspects of retweeting on Twit- ter [ C]//Proceedings of 43rd Hawaii International Conference on System Sciences, 2010.

共引文献171

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部