期刊文献+

Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion 被引量:1

Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion
原文传递
导出
摘要 The triboelectric nanogenerator has attracted global attention since it was proposed in 2012; the exploration of new applications is ongoing with much enthusiasm in this field. In this paper, we present a novel triboelectric nanogenerator based on magnetically induced retractable spring steel tapes (MR-TENG) to develop energy harvesing from large amplitude periodic motion, which is an ingenious design that employs a new material. The tape-like structural design ensures that the contact/separate direction of the friction layers is perpendicular to the direction of the external force, breaking the amplitude limitation of previous nanogenerators with vertical contact/separate motion. Combined with flexible spring steel tapes, this design enables portability thus widening its application. The working mechanism and factors that may affect the output performance are systematically studied. The results show that the maximum short-circuit current, open-circuit voltage and instantaneous power are 21 btA, 342 V, and 1.8 mW, respectively. Moreover, we also demonstrate the great potential of the MR-TENG to serve as a self-powered displacement sensor and portable emergency power supply. This work greatly widens the applications of triboelectric nanogenerators (TENGs) through new material selection and innovative structural design. The triboelectric nanogenerator has attracted global attention since it was proposed in 2012; the exploration of new applications is ongoing with much enthusiasm in this field. In this paper, we present a novel triboelectric nanogenerator based on magnetically induced retractable spring steel tapes (MR-TENG) to develop energy harvesing from large amplitude periodic motion, which is an ingenious design that employs a new material. The tape-like structural design ensures that the contact/separate direction of the friction layers is perpendicular to the direction of the external force, breaking the amplitude limitation of previous nanogenerators with vertical contact/separate motion. Combined with flexible spring steel tapes, this design enables portability thus widening its application. The working mechanism and factors that may affect the output performance are systematically studied. The results show that the maximum short-circuit current, open-circuit voltage and instantaneous power are 21 btA, 342 V, and 1.8 mW, respectively. Moreover, we also demonstrate the great potential of the MR-TENG to serve as a self-powered displacement sensor and portable emergency power supply. This work greatly widens the applications of triboelectric nanogenerators (TENGs) through new material selection and innovative structural design.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第2期633-641,共9页 纳米研究(英文版)
关键词 triboelectric nanogenerator(TENG) tape-like structure self-powered displacement sensor triboelectric nanogenerator(TENG),tape-like structure,self-powered,displacement sensor
  • 相关文献

参考文献6

二级参考文献10

共引文献21

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部