期刊文献+

Three-layer phosphorene-metal interfaces 被引量:2

Three-layer phosphorene-metal interfaces
原文传递
导出
摘要 Phosphorene has attracted much attention recently as an alternative channel material in nanoscale electronic and optoelectronic devices due to its high carrier mobility and tunable direct bandgap. Compared with monolayer (ML) phosphorene, few-layer (FL) phosphorene is easier to prepare, is more stable in experiments, and is expected to form a smaller Schottky barrier height (SBH) at the phosphorene-metal interface. Using ab initio electronic structure calculations and quantum transport simulations, we perform a systematic study of the interfacial properties of three-layer (3L) phosphorene field effect transistors (FETs) contacted with several common metals (A1, Ag, Au, Cu, Ti, Cr, Ni, and Pd) for the first time. The SBHs obtained in the vertical direction from projecting the band structures of the 3L phosphorene-metal systems to the left bilayer (2L) phosphorenes are comparable with those obtained in the lateral direction from the quantum transport simulations for 2L phosphorene FETs. The quantum transport simulations for the 3L phosphorene FETs show that 3L phosphorene forms n-type Schottky contacts with electron SBHs of 0.16 and 0.28 eV in the lateral direction, when Ag and Cu are used as electrodes, respectivel~ and p-type Schottky contacts with hole SBHs of 0.05, 0.11, 0.20, 0.30, 0.30, and 0.31 eV in the lateral direction when Cr, Pd, Ni, Ti, AI, and Au are used as electrodes, respectively. The calculated polarity and SBHs of the 3L phosphorene FETs are generally in agreement with the available experiments. Phosphorene has attracted much attention recently as an alternative channel material in nanoscale electronic and optoelectronic devices due to its high carrier mobility and tunable direct bandgap. Compared with monolayer (ML) phosphorene, few-layer (FL) phosphorene is easier to prepare, is more stable in experiments, and is expected to form a smaller Schottky barrier height (SBH) at the phosphorene-metal interface. Using ab initio electronic structure calculations and quantum transport simulations, we perform a systematic study of the interfacial properties of three-layer (3L) phosphorene field effect transistors (FETs) contacted with several common metals (A1, Ag, Au, Cu, Ti, Cr, Ni, and Pd) for the first time. The SBHs obtained in the vertical direction from projecting the band structures of the 3L phosphorene-metal systems to the left bilayer (2L) phosphorenes are comparable with those obtained in the lateral direction from the quantum transport simulations for 2L phosphorene FETs. The quantum transport simulations for the 3L phosphorene FETs show that 3L phosphorene forms n-type Schottky contacts with electron SBHs of 0.16 and 0.28 eV in the lateral direction, when Ag and Cu are used as electrodes, respectivel~ and p-type Schottky contacts with hole SBHs of 0.05, 0.11, 0.20, 0.30, 0.30, and 0.31 eV in the lateral direction when Cr, Pd, Ni, Ti, AI, and Au are used as electrodes, respectively. The calculated polarity and SBHs of the 3L phosphorene FETs are generally in agreement with the available experiments.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第2期707-721,共15页 纳米研究(英文版)
关键词 three-layer phosphorene interfacial properties Schottky barrier height density functional theorquantum transportsimulation three-layer phosphorene,interfacial properties,Schottky barrier height,density functional theorquantum transportsimulation
  • 相关文献

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部