期刊文献+

Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications 被引量:4

Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications
原文传递
导出
摘要 The fabrication of ultrathin alloy shells as heterogeneous catalysts to increase the utilization efficiency and enhance the catalytic activity of metal atoms has been recognized as an effective method for the construction of efficient metal nanocatalysts, particularly noble-metal nanocatalysts. In this study, we demonstrate the successful formation of Pd-M (M = Ni, Ag, Cu) alloy shells with a tunable thickness on preformed nanoscale Pd seeds. The success of this synthesis mainly relies on the combination of the slow reduction of "M" ions and the subsequent diffusion of M ad-atoms into the surface lattice of Pd seeds. The composition of the Pd-M alloy shell is easily tuned by changing the type and amount of the added precursor, and the shell thickness is manipulated according to the reaction time. More significantl the surface structure of these alloy shells is maintained after the reaction, implying that any desired surface structure of Pd-M alloy shells can be prepared by using the appropriate starting materials. Further catalytic evaluation of the hydrogenation of chloronitrobenzenes shows that these alloy surfaces exhibit significantly improved selectivity compared to the Pd seeds. The Pd-Ni alloy surfaces exhibit much better catalytic selectivity (as high as 〉 99%) than Pd catalysts. The fabrication of ultrathin alloy shells as heterogeneous catalysts to increase the utilization efficiency and enhance the catalytic activity of metal atoms has been recognized as an effective method for the construction of efficient metal nanocatalysts, particularly noble-metal nanocatalysts. In this study, we demonstrate the successful formation of Pd-M (M = Ni, Ag, Cu) alloy shells with a tunable thickness on preformed nanoscale Pd seeds. The success of this synthesis mainly relies on the combination of the slow reduction of "M" ions and the subsequent diffusion of M ad-atoms into the surface lattice of Pd seeds. The composition of the Pd-M alloy shell is easily tuned by changing the type and amount of the added precursor, and the shell thickness is manipulated according to the reaction time. More significantl the surface structure of these alloy shells is maintained after the reaction, implying that any desired surface structure of Pd-M alloy shells can be prepared by using the appropriate starting materials. Further catalytic evaluation of the hydrogenation of chloronitrobenzenes shows that these alloy surfaces exhibit significantly improved selectivity compared to the Pd seeds. The Pd-Ni alloy surfaces exhibit much better catalytic selectivity (as high as 〉 99%) than Pd catalysts.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第2期780-790,共11页 纳米研究(英文版)
关键词 Pd allo3 catalyst shape control hydrogenation Pd,allo3,catalyst,shape control,hydrogenation
  • 相关文献

参考文献2

二级参考文献3

共引文献26

同被引文献38

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部