期刊文献+

Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations 被引量:1

Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations
原文传递
导出
摘要 Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced rapidly in recent years, it lacks the theoretical support required for the rational design of innovative materials with tunable measurement responses. Herein, we present a one-dimensional (1D) hybrid nanofiber decorated with ultrafine NiO nanoparticles (NiO NPs) as an efficient active component for CSs. Highly dispersed (110)-facet NiO NPs with a high percentage of Ni2~ active sites with unsaturated coordination were confined in a TiO2 nanofiber (TiO2 NF) matrix that is favorable for surface catalytic reactions. The CSs constructed using the 1D heterostructure NiO/TiO2 nanofibers (NiOdrio2 HNFs) exhibited a highly selective response to trace CO gas molecules (1 ppm) with high sensitivity (AR/Ro = 1.02), ultrafast response/ recovery time (T 〈 20 s), and remarkable reproducibility at room tem- perature. The density functional theory (DFT) simulations and experimental results confirmed that the selective response could be attributed to the high molecular adsorption energy of the NiO nanoparticles with (110) facets and abundant interfaces, which act synergistically to promote CO adsorption and facilitate charge transfer. Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced rapidly in recent years, it lacks the theoretical support required for the rational design of innovative materials with tunable measurement responses. Herein, we present a one-dimensional (1D) hybrid nanofiber decorated with ultrafine NiO nanoparticles (NiO NPs) as an efficient active component for CSs. Highly dispersed (110)-facet NiO NPs with a high percentage of Ni2~ active sites with unsaturated coordination were confined in a TiO2 nanofiber (TiO2 NF) matrix that is favorable for surface catalytic reactions. The CSs constructed using the 1D heterostructure NiO/TiO2 nanofibers (NiOdrio2 HNFs) exhibited a highly selective response to trace CO gas molecules (1 ppm) with high sensitivity (AR/Ro = 1.02), ultrafast response/ recovery time (T 〈 20 s), and remarkable reproducibility at room tem- perature. The density functional theory (DFT) simulations and experimental results confirmed that the selective response could be attributed to the high molecular adsorption energy of the NiO nanoparticles with (110) facets and abundant interfaces, which act synergistically to promote CO adsorption and facilitate charge transfer.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第2期1029-1037,共9页 纳米研究(英文版)
关键词 hybrid nanofiber high active facet gas sensor SELECTIVITY highly sensitive density functional theory hybrid nanofiber,high active facet,gas sensor,selectivity,highly sensitive,density functional theory
  • 相关文献

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部