期刊文献+

斐波那契树优化算法全局随机性概率收敛分析 被引量:6

A global randomness-based probability convergence analysis of Fibonacci tree optimization algorithm
原文传递
导出
摘要 为改进斐波那契树优化算法的收敛性能,提出斐波那契树末梢自适应半径参数,使得算法在最优解邻域附近收敛能力显著提高.基于斐波那契树结构的全局随机性对斐波那契树优化算法的收敛性进行分析和证明.通过测试函数的求解精度比较、独立重复求解的收敛达标率比较实验验证了斐波那契树优化算法的收敛性能. A Fibonacci tree-end self-adaptive radius parameter is proposed to effectively enhance convergence of Fibonacci tree optimization(FTO) algorithm at neighborhood of optima. The convergence of FTO is analyzed and proved on the basis of global randomness of Fibonacci tree. By comparing both the precision in solving benchmark functions and the qualified rate of repeated and independent solutions, the convergence performance of FTO is also examined and confirmed.
出处 《控制与决策》 EI CSCD 北大核心 2018年第3期439-446,共8页 Control and Decision
基金 国家自然科学基金项目(61364024) 云南省自然科学基金重点项目(2013FA008)
关键词 斐波那契树优化算法 末梢自适应半径 全局随机性 收敛性 Fibonacci tree optimization algorithm Fibonacci tree-end self-adaptive radius global randomness^convergence
  • 相关文献

参考文献6

二级参考文献96

共引文献64

同被引文献62

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部