期刊文献+

基于城市共同配送网络体的配送中心选址研究 被引量:3

Location of Distribution Center Based on the System Structure of Urban Joint Distribution
原文传递
导出
摘要 随着现代社会经济的迅猛发展,城市规模日益扩大,对物流活动的要求越来越高。由于多品种、少批量、多频率的货物配送增加了城市交通的负荷,共同配送变得异常重要。针对B2C和C2C类货物的城市共同配送,本文建立了城市共同配送网络体系,基于此,解决了二级配送中心的选址问题,同时,本文根据中心地理论和六边形法则确定了城市配送中心数量;根据K-means聚类的方法,确定了城市配送中心的位置;最后,根据Voronoi图理论,确定了城市配送中心的服务范围。并以上海市内环区域为研究案例,验证了本文提出的方法的可行性。 With the rapid development of modem economy, people have already put forward higher requirements for the urban distribution, which requires many varieties, little batch and multi-frequency distribution, and this increases the load of traffic in the city as well. In this circumstance, joint distribution becomes more and more important. For the urban joint distribution of B2C and C2C goods, system structure of urban joint distribution was established, meanwhile, this paper applied the central place theory to identify the number of distribution center, used the K-means clustering analysis algorithm to determine the distribution center location and selected Voronoi diagram to divide the service area of distribution center, so as to address the key issues during the construction of joint distribution. Finally, Shanghai inner ring area was set as an example to verify the feasibility of the proposed approach. Keyword: Joint distribution; System structure; Location; Central place theory; K-means clustering; Voronoi diagram
出处 《综合运输》 2018年第2期78-83,88,共7页 China Transportation Review
关键词 共同配送 网络体系 选址 中心地理论 K-MEANS聚类 VORONOI图 Joint distribution System structure Location Central place theory K-means clustering Voronoi diagram
  • 相关文献

参考文献2

二级参考文献56

  • 1[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64.
  • 2[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps.
  • 3[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz.
  • 4[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps.
  • 5[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps.
  • 6[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235.
  • 7[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf.
  • 8[6]Albers G, et al. Voronoi diagrams of moving points[J].International Journal of Computational Geometry & Applications, 1998, 8(3): 365~380.
  • 9[7]Aurenhammer F. Power diagrams: properties,algorithms, and applications[J]. SIAM Journal on Computing, 1987, 16(1): 78~96.
  • 10[8]Augenbaum J M, Peskin C S. On the construction of the Voronoi mesh on a sphere[J]. Journal of Computational Physics, 1985, 59: 177~192.

共引文献79

同被引文献43

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部