期刊文献+

A high order numerical manifold method and its application to linear elastic continuous and fracture problems 被引量:1

A high order numerical manifold method and its application to linear elastic continuous and fracture problems
原文传递
导出
摘要 The numerical manifold method(NMM) is a partition of unity(PU) based method. For the purpose of obtaining better accuracy with the same mesh, high order global approximation can be adopted by increasing the order of local approximations(LAs). This,however, will cause the "linear dependence"(LD) issue, where the global matrix is rank deficient even after sufficient constraints are enforced. In this paper, through quadrilateral mesh to form the mathematical cover, a high order numerical manifold method called Quad4-COLS(NMM) is developed, where the constrained and orthonormalized least-squares method(CO-LS) is used to construct the LAs. The developed Quad4-COLS(NMM) does not need extra nodes or DOFs to construct high order global approximations, while is free from the LD issue. Nine numerical tests including five tests for linear elastic continuous problems and four tests for linear elastic fracture problems are carried out to validate the accuracy and robustness of the proposed Quad4-COLS(NMM).
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第3期346-358,共13页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.51609240&11572009) the Zhe Jiang Provincial Natural Science Foundation of China(Grant No.LY13E080009) the National Basic Research Program of China(Grant No.2014CB047100)
关键词 partition of unity based methods numerical manifold method Quad4-COLS(NMM) crack propagation linear dependence 线性 应用程序 歧管 破裂 单数 橡皮 数字测试 精确性
  • 相关文献

参考文献2

二级参考文献31

  • 1Wachspress E L. A Rational Finite Element Basis[M]. New York: Academic Press, 1975.
  • 2Tabarraei A, Sukumar N. Adaptive computations on conforming quadtree meshes [J]. Finite Elements in Analysis and Design, 2005, 41 (7/8) : 686-702.
  • 3Sukumar N, Malsch E A. Recent advances in the construction of polygonal fmite element interpolants[J]. Archives of Computational Methods in Engineering, 2006,13( 1 ) : 129-163.
  • 4Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20( 1 ) : 19-27.
  • 5Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139 ( 1/4 ) : 289-314.
  • 6Rajendran S, Zhang B R. A "FE-meshfree" QUAD4 element based on partition of unity [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197 ( 1/4 ) : 128-147.
  • 7Liu G R, Gu Y T. A point interpolation method for two dimensional solid [J]. International Journal for Numerical Methods in Engineering, 2001, 50(4) : 937-951.
  • 8Zheng C, Wu S C, Tang X H, et al. A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture[J]. Computer Modelling in Engineering &Sciences, 2008, 38 (2) : 149-178.
  • 9Strang G, Fix G. An Analysis of the Finite Element Method [M]. Engle-wood Cliffs, New Jersey: Prentice-Hall, 1973.
  • 10Zienkiewicz O C, Taylor R L. The Finite Element Method[ M]. 5th Ed. Oxford, UK: Butterworth Heinemann, 2000.

共引文献9

同被引文献36

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部